A183239 G.f.: exp( Sum_{n>=1} A005651(n)*x^n/n ), where A005651 gives the sums of multinomial coefficients.
1, 1, 2, 5, 17, 69, 352, 2077, 14505, 114354, 1023839, 10130051, 110878314, 1320375213, 17086334702, 237832320231, 3552995476517, 56590659564489, 958653346775294, 17192978984630744, 325681548343314833, 6494280460641306608
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 17*x^4 + 69*x^5 + 352*x^6 +... log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 47*x^4/4 + 246*x^5/5 + 1602*x^6/6 + 11481*x^7/7 + 95503*x^8/8 +...+ A005651(n)*x^n/n +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..420
Programs
-
PARI
{a(n)=polcoeff(exp(intformal(1/x*(-1+serlaplace(1/prod(k=1,n+1,1-x^k/k!+O(x^(n+2))))))),n)}
Formula
a(n) ~ c * (n-1)!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264... . - Vaclav Kotesovec, Feb 19 2015
Comments