cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A144791 Euler transform of A141199.

Original entry on oeis.org

1, 4, 11, 34, 93, 269, 735, 2037, 5515, 14912, 39828, 105931, 279408, 733409, 1913349, 4968092, 12835746, 33020764, 84586922, 215844162, 548725545, 1390140594, 3510064528, 8834980324, 22171254453, 55479601543, 138448505906, 344594242788, 855538158016
Offset: 1

Views

Author

Thomas Wieder, Sep 21 2008

Keywords

Crossrefs

Formula

G.f.: 1 / Product_{k>=1} (1 - x^k)^A141199(k).
a(n) = (1/n)*Sum_{k=1..n-1} c(k) A141199(n-k),
where c(n) = Sum_{k|n} k*A141199(k).

Extensions

More terms from Alois P. Heinz, Apr 21 2012

A218482 First differences of the binomial transform of the partition numbers (A000041).

Original entry on oeis.org

1, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812, 309274516740
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2012

Keywords

Comments

a(n) = A103446(n) for n>=1; here a(0) is set to 1 in accordance with the definition and other important generating functions.
From Gus Wiseman, Dec 12 2022: (Start)
Also the number of sequences of compositions (A133494) with weakly decreasing lengths and total sum n. For example, the a(0) = 1 through a(3) = 8 sequences are:
() ((1)) ((2)) ((3))
((11)) ((12))
((1)(1)) ((21))
((111))
((1)(2))
((2)(1))
((11)(1))
((1)(1)(1))
The case of constant lengths is A101509.
The case of strictly decreasing lengths is A129519.
The case of sequences of partitions is A141199.
The case of twice-partitions is A358831.
(End)

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
The g.f. equals the product:
A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1  +  x*(1-x)/((1-x)-x)^2  +  x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2  +  x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2  +  x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          add(combinat[numbpart](k)*binomial(n,k), k=0..n)
        end:
    a:= n-> b(n)-b(n-1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 19 2014
  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
  • PARI
    {a(n)=sum(k=0,n,(binomial(n,k)-if(n>0,binomial(n-1,k)))*numbpart(k))}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}

Formula

G.f.: Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015

A358836 Number of multiset partitions of integer partitions of n with all distinct block sizes.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Comments

Also the number of integer compositions of n whose leaders of maximal weakly decreasing runs are strictly increasing. For example, the composition (1,2,2,1,3,1,4,1) has maximal weakly decreasing runs ((1),(2,2,1),(3,1),(4,1)), with leaders (1,2,3,4), so is counted under a(15). - Gus Wiseman, Aug 21 2024

Examples

			The a(1) = 1 through a(5) = 15 multiset partitions:
  {1}  {2}    {3}        {4}          {5}
       {1,1}  {1,2}      {1,3}        {1,4}
              {1,1,1}    {2,2}        {2,3}
              {1},{1,1}  {1,1,2}      {1,1,3}
                         {1,1,1,1}    {1,2,2}
                         {1},{1,2}    {1,1,1,2}
                         {2},{1,1}    {1},{1,3}
                         {1},{1,1,1}  {1},{2,2}
                                      {2},{1,2}
                                      {3},{1,1}
                                      {1,1,1,1,1}
                                      {1},{1,1,2}
                                      {2},{1,1,1}
                                      {1},{1,1,1,1}
                                      {1,1},{1,1,1}
From _Gus Wiseman_, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
(End)
		

Crossrefs

The version for set partitions is A007837.
For sums instead of sizes we have A271619.
For constant instead of distinct sizes we have A319066.
These multiset partitions are ranked by A326533.
For odd instead of distinct sizes we have A356932.
The version for twice-partitions is A358830.
The case of distinct sums also is A358832.
Ranked by positions of strictly increasing rows in A374740, opposite A374629.
A001970 counts multiset partitions of integer partitions.
A011782 counts compositions.
A063834 counts twice-partitions, strict A296122.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}]
    (* second program *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: Product_{k>=1} (1 + [y^k]P(x,y)) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022

A374706 Sum of minima of the maximal strictly increasing runs in the weakly increasing prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 1, 4, 3, 4, 1, 5, 2, 6, 1, 2, 4, 7, 3, 8, 2, 2, 1, 9, 3, 6, 1, 6, 2, 10, 1, 11, 5, 2, 1, 3, 4, 12, 1, 2, 3, 13, 1, 14, 2, 4, 1, 15, 4, 8, 4, 2, 2, 16, 5, 3, 3, 2, 1, 17, 2, 18, 1, 4, 6, 3, 1, 19, 2, 2, 1, 20, 5, 21, 1, 5, 2, 4, 1, 22, 4, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), summing to a(540) = 6.
		

Crossrefs

For leaders of constant runs we have A066328.
A version for compositions is A374684, row-sums of A374683 (length A124768).
Row-sums of A375128.
For length instead of sum we have A375136.
A055887 counts sequences of partitions with total sum n.
A112798 lists prime indices:
- length A001222, distinct A001221
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[First/@Split[prix[n],Less]],{n,100}]

A375133 Number of integer partitions of n whose maximal anti-runs have distinct maxima.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 8, 10, 14, 17, 23, 29, 38, 47, 60, 74, 93, 113, 141, 171, 211, 253, 309, 370, 447, 532, 639, 758, 904, 1066, 1265, 1487, 1754, 2053, 2411, 2813, 3289, 3823, 4454, 5161, 5990, 6920, 8005, 9223, 10634, 12218, 14048, 16101, 18462, 21107
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
These are partitions with no part appearing more than twice and greatest part appearing only once.
Also the number of reversed integer partitions of n whose maximal anti-runs have distinct maxima.

Examples

			The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with maxima (6,5,3), so y is counted under a(29).
The a(0) = 1 through a(9) = 14 partitions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)     (9)
                (21)  (31)   (32)   (42)   (43)    (53)    (54)
                      (211)  (41)   (51)   (52)    (62)    (63)
                             (311)  (321)  (61)    (71)    (72)
                                    (411)  (322)   (422)   (81)
                                           (421)   (431)   (432)
                                           (511)   (521)   (522)
                                           (3211)  (611)   (531)
                                                   (3221)  (621)
                                                   (4211)  (711)
                                                           (4221)
                                                           (4311)
                                                           (5211)
                                                           (32211)
		

Crossrefs

Includes all strict partitions A000009.
For identical instead of distinct see: A034296, A115029, A374760, A374759.
For compositions instead of partitions we have A374761.
For minima instead of maxima we have A375134, ranks A375398.
The complement is counted by A375401, ranks A375403.
These partitions are ranked by A375402, for compositions A374767.
The complement for minima instead of maxima is A375404, ranks A375399.
A000041 counts integer partitions.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]
  • PARI
    A_x(N) = {my(x='x+O('x^N), f=sum(i=0,N,(x^i)*prod(j=1,i-1,(1-x^(3*j))/(1-x^j)))); Vec(f)}
    A_x(51) \\ John Tyler Rascoe, Aug 21 2024

Formula

G.f.: Sum_{i>=0} (x^i * Product_{j=1..i-1} (1-x^(3*j))/(1-x^j)). - John Tyler Rascoe, Aug 21 2024

A375128 Irregular triangle read by rows where row n lists the minima of maximal strictly increasing runs in the weakly increasing prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 4, 1, 1, 1, 2, 2, 1, 5, 1, 1, 6, 1, 2, 1, 1, 1, 1, 7, 1, 2, 8, 1, 1, 2, 1, 9, 1, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 10, 1, 11, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 12, 1, 2, 1, 1, 1, 13, 1, 14, 1, 1, 2, 2, 1, 15, 1, 1, 1, 1, 4, 4, 1, 3, 2, 1, 1, 16
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The minima of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), which is row 540.
Triangle begins:
   1:
   2:  1
   3:  2
   4:  1  1
   5:  3
   6:  1
   7:  4
   8:  1  1  1
   9:  2  2
  10:  1
  11:  5
  12:  1  1
  13:  6
  14:  1
  15:  2
  16:  1  1  1  1
		

Crossrefs

Row-minima are A055396.
Row-sums are A374706.
Row-lengths are A375136.
For leaders of constant runs we have A304038, row-sums A066328.
For compositions we have A374683, row-sums of A374684 (length A124768).
A112798 lists prime indices:
- length A001222, distinct A001221
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    Table[If[n==1,{},First/@Split[Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]],Less]],{n,100}]

A358830 Number of twice-partitions of n into partitions with all different lengths.

Original entry on oeis.org

1, 1, 2, 4, 9, 15, 31, 53, 105, 178, 330, 555, 1024, 1693, 2991, 5014, 8651, 14242, 24477, 39864, 67078, 109499, 181311, 292764, 483775, 774414, 1260016, 2016427, 3254327, 5162407, 8285796, 13074804, 20812682, 32733603, 51717463, 80904644, 127305773, 198134675, 309677802
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)      (4)       (5)
       (11)  (21)     (22)      (32)
             (111)    (31)      (41)
             (11)(1)  (211)     (221)
                      (1111)    (311)
                      (11)(2)   (2111)
                      (2)(11)   (11111)
                      (21)(1)   (21)(2)
                      (111)(1)  (22)(1)
                                (3)(11)
                                (31)(1)
                                (111)(2)
                                (211)(1)
                                (111)(11)
                                (1111)(1)
		

Crossrefs

The version for set partitions is A007837.
For sums instead of lengths we have A271619.
For constant instead of distinct lengths we have A306319.
The case of distinct sums also is A358832.
The version for multiset partitions of integer partitions is A358836.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@Length/@#&]],{n,0,10}]
  • PARI
    seq(n)={ local(Cache=Map());
      my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
      my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
      z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A358831 Number of twice-partitions of n into partitions with weakly decreasing lengths.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 56, 102, 205, 372, 708, 1260, 2345, 4100, 7388, 12819, 22603, 38658, 67108, 113465, 193876, 324980, 547640, 909044, 1516609, 2495023, 4118211, 6726997, 11002924, 17836022, 28948687, 46604803, 75074397, 120134298, 192188760, 305709858, 486140940
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(4) = 14 twice-partitions:
  (1)  (2)     (3)        (4)
       (11)    (21)       (22)
       (1)(1)  (111)      (31)
               (2)(1)     (211)
               (11)(1)    (1111)
               (1)(1)(1)  (2)(2)
                          (3)(1)
                          (11)(2)
                          (21)(1)
                          (11)(11)
                          (111)(1)
                          (2)(1)(1)
                          (11)(1)(1)
                          (1)(1)(1)(1)
		

Crossrefs

This is the semi-ordered case of A141199.
For constant instead of weakly decreasing lengths we have A306319.
For distinct instead of weakly decreasing lengths we have A358830.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A196545 counts p-trees, enriched A289501.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],GreaterEqual@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=Vec(P(n,y)-1), v=[1]); for(k=1, n, my(p=g[k], u=v); v=vector(k+1); v[1] = 1 + O(x*x^n); for(j=1, k, v[1+j] = (v[j] + if(jAndrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A375136 Number of maximal strictly increasing runs in the weakly increasing prime factors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

For n > 1, this is one more than the number of adjacent equal terms in the multiset of prime factors of n.

Examples

			The prime factors of 540 are {2,2,3,3,3,5}, with maximal strictly increasing runs ({2},{2,3},{3},{3,5}), so a(540) = 4.
		

Crossrefs

For compositions we have A124768, row-lengths of A374683, sum A374684.
For sum of prime indices we have A374706.
Row-lengths of A375128.
A112798 lists prime indices:
- distinct A001221
- length A001222
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    Table[Length[Split[Flatten[ConstantArray@@@FactorInteger[n]],Less]],{n,100}]

Formula

For n > 1, a(n) = A046660(n) + 1 = A001222(n) - A001221(n) + 1.

A375134 Number of integer partitions of n whose maximal anti-runs have distinct minima.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 8, 11, 12, 18, 21, 28, 33, 43, 52, 66, 78, 98, 116, 145, 171, 209, 247, 300, 352, 424, 499, 595, 695, 826, 963, 1138, 1322, 1553, 1802, 2106, 2435, 2835, 3271, 3795, 4365, 5046, 5792, 6673, 7641, 8778, 10030, 11490, 13099, 14968, 17030
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

These are partitions with no part appearing more than twice and with the least part appearing only once.
Also the number of reversed integer partitions of n whose maximal anti-runs have distinct minima.

Examples

			The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with minima (5,3,1), so y is counted under a(29).
The a(1) = 1 through a(9) = 11 partitions:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
            (12)  (13)  (14)   (15)   (16)   (17)    (18)
                        (23)   (24)   (25)   (26)    (27)
                        (122)  (123)  (34)   (35)    (36)
                                      (124)  (125)   (45)
                                      (133)  (134)   (126)
                                             (233)   (135)
                                             (1223)  (144)
                                                     (234)
                                                     (1224)
                                                     (1233)
		

Crossrefs

Includes all strict partitions A000009.
For identical instead of distinct leaders we have A115029.
A version for compositions instead of partitions is A374518, ranks A374638.
For minima instead of maxima we have A375133, ranks A375402.
These partitions have ranks A375398.
The complement is counted by A375404, ranks A375399.
A000041 counts integer partitions.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
  • PARI
    A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,(x^i)*prod(j=i+1,N-i,(1-x^(3*j))/(1-x^j)))); Vec(f)}
    A_x(51) \\ John Tyler Rascoe, Aug 21 2024

Formula

G.f.: 1 + Sum_{i>0} (x^i * Product_{j>i} (1-x^(3*j))/(1-x^j)). - John Tyler Rascoe, Aug 21 2024
Showing 1-10 of 28 results. Next