A319193 Irregular triangle where T(n,k) is the number of permutations of the integer partition with Heinz number A215366(n,k).
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 4, 1, 1, 2, 2, 1, 1, 3, 6, 6, 4, 5, 1, 1, 2, 2, 2, 6, 3, 3, 3, 4, 4, 12, 10, 5, 6, 1, 1, 2, 2, 1, 3, 2, 3, 6, 6, 3, 1, 12, 4, 12, 6, 10, 5, 20, 15, 6, 7, 1, 1, 2, 2, 2, 3, 2, 6, 3, 3, 4, 6, 6, 1, 12, 12, 4, 12
Offset: 0
Examples
Triangle begins: 1 1 1 1 1 2 1 1 1 2 3 1 1 2 2 3 3 4 1 1 2 2 1 1 3 6 6 4 5 1 The fourth row corresponds to the symmetric function identity: h(4) = -e(4) + e(22) + 2 e(31) - 3 e(211) + e(1111).
Links
- Alois P. Heinz, Rows n = 0..33, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n], [seq( map(p-> p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)]) end: T:= n-> map(m-> (l-> add(i, i=l)!/mul(i!, i=l))(map( i-> i[2], ifactors(m)[2])), sort(b(n$2)))[]: seq(T(n), n=0..10); # Alois P. Heinz, Feb 14 2020
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Permutations[primeMS[k]]],{n,6},{k,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0 || i < 2, {2^n}, Flatten[Table[ #*Prime[i]^j& /@ b[n - i*j, i - 1], {j, 0, n/i}]]]; T[n_] := Map[Function[m, Function[l, Total[l]!/Times @@ (l!)][ FactorInteger[m][[All, 2]]]], Sort[b[n, n]]]; T /@ Range[0, 10] // Flatten (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Extensions
T(0,1)=1 prepended by Alois P. Heinz, Feb 14 2020
Comments