cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A345197 Concatenation of square matrices A(n), each read by rows, where A(n)(k,i) is the number of compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 0, 0, 3, 4, 3, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 03 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The matrices for n = 1..7:
  1   0 1   0 0 1   0 0 0 1   0 0 0 0 1   0 0 0 0 0 1   0 0 0 0 0 0 1
      1 0   1 1 0   1 1 1 0   1 1 1 1 0   1 1 1 1 1 0   1 1 1 1 1 1 0
            0 1 0   0 1 2 0   0 1 2 3 0   0 1 2 3 4 0   0 1 2 3 4 5 0
                    0 1 0 0   0 2 2 0 0   0 3 4 3 0 0   0 4 6 6 4 0 0
                              0 0 1 0 0   0 0 2 3 0 0   0 0 3 6 6 0 0
                                          0 0 1 0 0 0   0 0 3 3 0 0 0
                                                        0 0 0 1 0 0 0
Matrix n = 5 counts the following compositions:
           i=-3:        i=-1:          i=1:            i=3:        i=5:
        -----------------------------------------------------------------
   k=1: |    0            0             0               0          (5)
   k=2: |   (14)         (23)          (32)            (41)         0
   k=3: |    0          (131)       (221)(122)   (311)(113)(212)    0
   k=4: |    0       (1211)(1112)  (2111)(1121)         0           0
   k=5: |    0            0          (11111)            0           0
		

Crossrefs

The number of nonzero terms in each matrix appears to be A000096.
The number of zeros in each matrix appears to be A000124.
Row sums and column sums both appear to be A007318 (Pascal's triangle).
The matrix sums are A131577.
Antidiagonal sums appear to be A163493.
The reverse-alternating version is also A345197 (this sequence).
Antidiagonals are A345907.
Traces are A345908.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Other tetrangles: A318393, A318816, A320808, A321912.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&&ats[#]==i&]],{n,0,6},{k,1,n},{i,-n+2,n,2}]

A321935 Tetrangle: T(n,H(u),H(v)) is the coefficient of p(v) in S(u), where u and v are integer partitions of n, H is Heinz number, p is the basis of power sum symmetric functions, and S is the basis of augmented Schur functions.

Original entry on oeis.org

1, 1, 1, -1, 1, 2, 3, 1, -1, 0, 1, 2, -3, 1, 6, 3, 8, 6, 1, 0, 3, -4, 0, 1, -2, -1, 0, 2, 1, 2, -1, 0, -2, 1, -6, 3, 8, -6, 1, 24, 30, 20, 15, 20, 10, 1, -6, 0, -5, 0, 5, 5, 1, 0, -6, 4, 3, -4, 2, 1, 0, 6, -4, 3, -4, -2, 1, 4, 0, 0, -5, 0, 0, 1, -6, 0, 5, 0, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
We define the augmented Schur functions to be S(y) = |y|! * s(y) / syt(y), where s is the basis of Schur functions and syt(y) is the number of standard Young tableaux of shape y.

Examples

			Tetrangle begins (zeros not shown):
  (1):  1
.
  (2):   1  1
  (11): -1  1
.
  (3):    2  3  1
  (21):  -1     1
  (111):  2 -3  1
.
  (4):     6  3  8  6  1
  (22):       3 -4     1
  (31):   -2 -1     2  1
  (211):   2 -1    -2  1
  (1111): -6  3  8 -6  1
.
  (5):     24 30 20 15 20 10  1
  (41):    -6    -5     5  5  1
  (32):       -6  4  3 -4  2  1
  (221):       6 -4  3 -4 -2  1
  (311):    4       -5        1
  (2111):  -6     5     5 -5  1
  (11111): 24 30 20 15 20 10  1
For example, row 14 gives: S(32) = 4p(32) - 6p(41) + 3p(221) - 4p(311) + 2p(2111) + p(11111).
		

Crossrefs

This is a regrouping of the triangle A321900.

A321914 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, -2, 1, 1, 0, 3, -3, 1, -3, 1, 0, 1, 0, 0, -4, 2, 4, -4, 1, 2, 1, -2, 0, 0, 4, -2, -1, 1, 0, -4, 0, 1, 0, 0, 1, 0, 0, 0, 0, 5, -5, -5, 5, 5, -5, 1, -5, 1, 5, -3, -1, 1, 0, -5, 5, -1, 1, -2, 0, 0, 5, -3, 1, 0, 0, 0, 0, 5, -1, -2, 0, 1, 0, 0, -5, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of h(v) in f(u), where f is forgotten symmetric functions and h is homogeneous symmetric functions.

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):  -2  1
  (11):  1
.
  (3):    3 -3  1
  (21):  -3  1
  (111):  1
.
  (4):    -4  2  4 -4  1
  (22):    2  1 -2
  (31):    4 -2 -1  1
  (211):  -4     1
  (1111):  1
.
  (5):      5 -5 -5  5  5 -5  1
  (41):    -5  1  5 -3 -1  1
  (32):    -5  5 -1  1 -2
  (221):    5 -3  1
  (311):    5 -1 -2     1
  (2111):  -5  1
  (11111):  1
For example, row 14 gives: m(32) = -5e(5) - e(32) + 5e(41) + e(221) - 2e(311).
		

Crossrefs

A321918 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in p(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and p is power sum symmetric functions.

Original entry on oeis.org

1, -2, 1, 0, 1, 3, -3, 1, 0, -2, 1, 0, 0, 1, -4, 2, 4, -4, 1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 1, 5, -5, -5, 5, 5, -5, 1, 0, -4, 0, 2, 4, -4, 1, 0, 0, -6, 6, 3, -5, 1, 0, 0, 0, 4, 0, -4, 1, 0, 0, 0, 0, 3, -3, 1, 0, 0, 0, 0, 0, -2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):  -2  1
  (11):     1
.
  (3):    3 -3  1
  (21):     -2  1
  (111):        1
.
  (4):    -4  2  4 -4  1
  (22):       4    -4  1
  (31):          3 -3  1
  (211):           -2  1
  (1111):              1
.
  (5):      5 -5 -5  5  5 -5  1
  (41):       -4     2  4 -4  1
  (32):          -6  6  3 -5  1
  (221):             4    -4  1
  (311):                3 -3  1
  (2111):                 -2  1
  (11111):                    1
For example, row 14 gives: p(32) = -6e(32) + 6e(221) + 3e(311) - 5e(2111) + e(11111).
		

Crossrefs

A321931 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in M(u), where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and M is augmented monomial symmetric functions.

Original entry on oeis.org

1, 1, 0, -1, 1, 1, 0, 0, -1, 1, 0, 2, -3, 1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 2, -1, -2, 1, 0, -6, 3, 8, -6, 1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 2, -1, -2, 1, 0, 0, 0, 2, -2, -1, 0, 1, 0, 0, -6, 6, 5, -3, -3, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented monomial symmetric functions are given by M(y) = c(y) * m(y) where c(y) = Product_i (y)_i! where (y)_i is the number of i's in y and m is monomial symmetric functions.

Examples

			Tetrangle begins (zeros not shown):
  (1):  1
.
  (2):   1
  (11): -1  1
.
  (3):    1
  (21):  -1  1
  (111):  2 -3  1
.
  (4):     1
  (22):   -1  1
  (31):   -1     1
  (211):   2 -1 -2  1
  (1111): -6  3  8 -6  1
.
  (5):      1
  (41):    -1  1
  (32):    -1     1
  (221):    2 -1 -2  1
  (311):    2 -2 -1     1
  (2111):  -6  6  5 -3 -3  1
  (11111): 24 30 20 15 20 10  1
For example, row 14 gives: M(32) = -p(5) + p(32).
		

Crossrefs

Row sums are A155972. This is a regrouping of the triangle A321895.

A321913 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in h(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 6, 1, 1, 1, 1, 1, 1, 3, 2, 4, 6, 1, 2, 2, 3, 4, 1, 4, 3, 7, 12, 1, 6, 4, 12, 24, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 1, 2, 3, 5, 4, 7, 10, 1, 3, 5, 11, 8, 18, 30, 1, 3, 4, 8, 7, 13, 20, 1, 4, 7, 18, 13, 33, 60, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of f(v) in e(u), where f is forgotten symmetric functions and e is elementary symmetric functions.

Examples

			Tetrangle begins:
  (1):  1
.
  (2):   1  1
  (11):  1  2
.
  (3):    1  1  1
  (21):   1  2  3
  (111):  1  3  6
.
  (4):     1  1  1  1  1
  (22):    1  3  2  4  6
  (31):    1  2  2  3  4
  (211):   1  4  3  7 12
  (1111):  1  6  4 12 24
.
  (5):      1  1  1  1  1  1  1
  (41):     1  2  2  3  3  4  5
  (32):     1  2  3  5  4  7 10
  (221):    1  3  5 11  8 18 30
  (311):    1  3  4  8  7 13 20
  (2111):   1  4  7 18 13 33 60
  (11111):  1  5 10 30 20 60 20
For example, row 14 gives: h(32) = m(5) + 3m(32) + 2m(41) + 5m(221) + 4m(311) + 7m(2111) + 10m(11111).
		

Crossrefs

This is a regrouping of the triangle A321744.

A321917 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in p(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 3, 6, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 2, 2, 0, 1, 6, 4, 12, 24, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 1, 2, 1, 0, 2, 0, 0, 1, 3, 4, 6, 6, 6, 0, 1, 5, 10, 30
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):   1
  (11):  1  2
.
  (3):    1
  (21):   1  1
  (111):  1  3  6
.
  (4):     1
  (22):    1  2
  (31):    1     1
  (211):   1  2  2  2
  (1111):  1  6  4 12 24
.
  (5):      1
  (41):     1  1
  (32):     1     1
  (221):    1  1  2  2
  (311):    1  2  1     2
  (2111):   1  3  4  6  6  6
  (11111):  1  5 10 30 20 60 20
For example, row 14 gives: p(32) = m(5) + m(32).
		

Crossrefs

This is a regrouping of the triangle A321750.

A321924 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in s(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and s is Schur functions.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 2, 3, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 3, 4, 0, 0, 1, 2, 1, 3, 5, 0, 0, 0, 1, 0, 2, 5, 0, 0, 0, 1, 1, 3, 6, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Tetrangle begins (zeroes not shown):
  (1): 1
.
  (2):  1 1
  (11):   1
.
  (3):   1 1 1
  (21):    1 2
  (111):     1
.
  (4):    1 1 1 1 1
  (22):     1   1 2
  (31):     1 1 2 3
  (211):        1 3
  (1111):         1
.
  (5):     1 1 1 1 1 1 1
  (41):      1 1 2 2 3 4
  (32):        1 2 1 3 5
  (221):         1   2 5
  (311):         1 1 3 6
  (2111):            1 4
  (11111):             1
For example, row 14 gives: s(32) = m(32) + 2m(221) + m(311) + 3m(2111) + 5m(11111).
		

Crossrefs

This is a regrouping of the triangle A321761.

A321925 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in m(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and m is monomial symmetric functions.

Original entry on oeis.org

1, 1, -1, 0, 1, 1, -1, 1, 0, 1, -2, 0, 0, 1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 1, 0, -1, 1, -1, 2, 0, 0, 0, 1, -3, 0, 0, 0, 0, 1, 1, -1, 0, 0, 1, -1, 1, 0, 1, -1, 1, -1, 1, -2, 0, 0, 1, -1, -1, 2, -2, 0, 0, 0, 1, 0, -2, 3, 0, 0, 0, -1, 1, -1, 3, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):   1 -1
  (11):     1
.
  (3):    1 -1  1
  (21):      1 -2
  (111):        1
.
  (4):     1    -1  1 -1
  (22):       1    -1  1
  (31):      -1  1 -1  2
  (211):            1 -3
  (1111):              1
.
  (5):      1 -1        1 -1  1
  (41):        1 -1  1 -1  1 -2
  (32):           1 -1 -1  2 -2
  (221):             1    -2  3
  (311):            -1  1 -1  3
  (2111):                  1 -4
  (11111):                    1
For example, row 14 gives: m(32) = s(32) - s(221) - s(311) + 2s(2111) - 2s(11111).
		

Crossrefs

This is a regrouping of the triangle A321763.

A321934 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in F(u), where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and F is augmented forgotten symmetric functions.

Original entry on oeis.org

1, -1, 0, 1, 1, 1, 0, 0, -1, -1, 0, 2, 3, 1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, -2, -1, -2, -1, 0, 6, 3, 8, 6, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 2, 1, 0, 1, 0, 0, -6, -6, -5, -3, -3, -1, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented forgotten symmetric functions are given by F(y) = c(y) * f(y) where f is forgotten symmetric functions and c(y) = Product_i (y)_i!, where (y)_i is the number of i's in y.

Examples

			Tetrangle begins (zeros not shown):
  (1):  1
.
  (2):  -1
  (11):  1  1
.
  (3):    1
  (21):  -1 -1
  (111):  2  3  1
.
  (4):    -1
  (22):    1  1
  (31):    1     1
  (211):  -2 -1 -2 -1
  (1111):  6  3  8  6  1
.
  (5):      1
  (41):    -1 -1
  (32):    -1    -1
  (221):    2  1  2  1
  (311):    2  2  1     1
  (2111):  -6 -6 -5 -3 -3 -1
  (11111): 24 30 20 15 20 10  1
For example, row 14 gives: F(32) = -p(5) - p(32).
		

Crossrefs

Row sums are A178803. Up to sign, same as A321931. This is a regrouping of the triangle A321899.
Showing 1-10 of 24 results. Next