A321912 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in e(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.
1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 3, 1, 3, 6, 0, 0, 0, 0, 1, 0, 1, 0, 2, 6, 0, 0, 0, 1, 4, 0, 2, 1, 5, 12, 1, 6, 4, 12, 24, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 3, 10, 0, 0, 1, 5, 2, 12, 30, 0, 0, 0, 2, 1, 7, 20, 0, 1, 3, 12, 7, 27, 60, 1, 5
Offset: 1
Examples
Tetrangle begins (zeroes not shown): (1): 1 . (2): 1 (11): 1 2 . (3): 1 (21): 1 3 (111): 1 3 6 . (4): 1 (22): 1 2 6 (31): 1 4 (211): 2 1 5 12 (1111): 1 6 4 12 24 . (5): 1 (41): 1 5 (32): 1 3 10 (221): 1 5 2 12 30 (311): 2 1 7 20 (2111): 1 3 12 7 27 60 (11111): 1 5 10 30 20 60 20 For example, row 14 gives: e(32) = m(221) + 3m(2111) + 10m(11111).
Links
- Wikipedia, Symmetric polynomial
Comments