cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A188489 Exponential transform of (A000275 number of pairs of permutations with rise/rise forbidden).

Original entry on oeis.org

1, 1, 2, 8, 61, 797, 16021, 457285, 17529203, 867230231, 53745914922, 4076301322848, 371301496685164, 39992538951200636, 5027440719872343598, 729432303460596468394, 120977789712983152108734, 22743262423568258626295550
Offset: 0

Views

Author

Paul D. Hanna, Apr 01 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 61*x^4 + 797*x^5 + 16021*x^6 +...
log(A(x)) = x + 3*x^2/2 + 19*x^3/3 + 211*x^4/4 + 3651*x^5/5 + 90921*x^6/6 +...+ A000275(n)*x^n/n +...
		

Crossrefs

Cf. A000275 (log), A115368.

Programs

  • PARI
    {A000275(n)=n!^2*4^n*polcoeff(1/besselj(0, x+x*O(x^(2*n))), 2*n)}
    {a(n)=polcoeff(exp(sum(m=1,n,A000275(m)*x^m/m)+x*O(x^n)),n)}

Formula

G.f.: A(x) = exp( Sum_{n>=1} A000275(n)*x^n/n ) where A000275 is the number of pairs of permutations with rise/rise forbidden.
a(n) ~ c * n! * (n-1)! / r^n, where r = 1/4*BesselJZero[0,1]^2 = 1.44579649073669613 and c = 1/(sqrt(r) * BesselJ(1, 2*sqrt(r))) = 1.6019746969280466266484... - Vaclav Kotesovec, Mar 02 2014, updated Apr 01 2018

A039966 a(0) = 1; thereafter a(3n+2) = 0, a(3n) = a(3n+1) = a(n).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Number of partitions of n into distinct powers of 3.
Trajectory of 1 under the morphism: 1 -> 110, 0 -> 000. Thus 1 -> 110 ->110110000 -> 110110000110110000000000000 -> ... - Philippe Deléham, Jul 09 2005
Also, an example of a d-perfect sequence.
This is a composite of two earlier sequences contributed at different times by N. J. A. Sloane and by Reinhard Zumkeller, Mar 05 2005. Christian G. Bower extended them and found that they agreed for at least 512 terms. The proof that they were identical was found by Ralf Stephan, Jun 13 2005, based on the fact that they were both 3-regular sequences.

Examples

			The triples of elements (a(3k), a(3k+1), a(3k+2)) are (1,1,0) if a(k) = 1 and (0,0,0) if a(k) = 0.  So since a(2) = 0, a(6) = a(7) = a(8) = 0, and since a(3) = 1, a(9) = a(10) = 1 and a(11) = 0. - _Michael B. Porter_, Jul 11 2016
		

Crossrefs

For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Characteristic function of A005836 (and apart from offset of A003278).

Programs

  • Haskell
    a039966 n = fromEnum (n < 2 || m < 2 && a039966 n' == 1)
       where (n',m) = divMod n 3
    -- Reinhard Zumkeller, Sep 29 2011
    
  • Maple
    a := proc(n) option remember; if n <= 1 then RETURN(1) end if; if n = 2 then RETURN(0) end if; if n mod 3 = 2 then RETURN(0) end if; if n mod 3 = 0 then RETURN(a(1/3*n)) end if; if n mod 3 = 1 then RETURN(a(1/3*n - 1/3)) end if end proc; # Ralf Stephan, Jun 13 2005
  • Mathematica
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) s = Rest[ Sort[ Plus @@@ Table[UnrankSubset[n, Table[3^i, {i, 0, 4}]], {n, 32}]]]; Table[ If[ Position[s, n] == {}, 0, 1], {n, 105}] (* Robert G. Wilson v, Jun 14 2005 *)
    CoefficientList[Series[Product[(1 + x^(3^k)), {k, 0, 5}], {x, 0, 111}], x] (* or *)
    Nest[ Flatten[ # /. {0 -> {0, 0, 0}, 1 -> {1, 1, 0}}] &, {1}, 5] (* Robert G. Wilson v, Mar 29 2006 *)
    Nest[ Join[#, #, 0 #] &, {1}, 5] (* Robert G. Wilson v, Jul 27 2014 *)
  • PARI
    {a(n)=local(A,m); if(n<0, 0, m=1; A=1+O(x); while(m<=n, m*=3; A=(1+x)*subst(A,x,x^3)); polcoeff(A,n))} /* Michael Somos, Jul 15 2005 */
    
  • PARI
    A039966(n)=vecmax(digits(n+!n,3))<2;
    apply(A039966, [0..99]) \\ M. F. Hasler, Feb 15 2023
    
  • Python
    def A039966(n):
        while n > 2:
            n,r = divmod(n,3)
            if r==2: return 0
        return int(n!=2) # M. F. Hasler, Feb 15 2023

Formula

a(0) = 1, a(1) = 0, a(n) = b(n-2), where b is the sequence defined by b(0) = 1, b(3n+2) = 0, b(3n) = b(3n+1) = b(n). - Ralf Stephan
a(n) = A005043(n-1) mod 3. - Christian G. Bower, Jun 12 2005
a(n) = A002426(n) mod 3. - John M. Campbell, Aug 24 2011
a(n) = A000275(n) mod 3. - John M. Campbell, Jul 08 2016
Properties: 0 <= a(n) <= 1, a(A074940(n)) = 0, a(A005836(n)) = 1; A104406(n) = Sum(a(k), 1 <= k <= n). - Reinhard Zumkeller, Mar 05 2005
Euler transform of sequence b(n) where b(3^k) = 1, b(2*3^k) = -1 and zero otherwise. - Michael Somos, Jul 15 2005
G.f. A(x) satisfies A(x) = (1+x)*A(x^3). - Michael Somos, Jul 15 2005
G.f.: Product{k>=0} 1+x^(3^k). Exponents give A005836.

Extensions

Entry revised Jun 30 2005
Offset corrected by John M. Campbell, Aug 24 2011

A115368 Decimal expansion of first zero of the Bessel function J_0(z).

Original entry on oeis.org

2, 4, 0, 4, 8, 2, 5, 5, 5, 7, 6, 9, 5, 7, 7, 2, 7, 6, 8, 6, 2, 1, 6, 3, 1, 8, 7, 9, 3, 2, 6, 4, 5, 4, 6, 4, 3, 1, 2, 4, 2, 4, 4, 9, 0, 9, 1, 4, 5, 9, 6, 7, 1, 3, 5, 7, 0, 6, 9, 9, 9, 0, 9, 0, 5, 9, 6, 7, 6, 5, 8, 3, 8, 6, 7, 7, 1, 9, 4, 0, 2, 9, 2, 0, 4, 4, 3, 6, 3, 4, 3, 7, 6, 0, 1, 4, 5, 2, 5, 4, 7, 8, 6, 8, 9
Offset: 1

Views

Author

Eric W. Weisstein, Jan 21 2006

Keywords

Comments

"This [constant] arises from the study of a vibrating, homogeneous membrane that is uniformly stretched across the unit disk. [Its square] is the principal frequency of the sound one hears when a kettledrum is struck." - Quoted from the book by Steven R. Finch.
Siegel proves (the Main Theorem) that J_0(z) is transcendental if z is algebraic and nonzero, but since in our case J_0(z) = 0 is not transcendental it follows that z cannot be algebraic. - Charles R Greathouse IV, Oct 20 2020

Examples

			2.4048255576957727686...
		

References

  • Chi Keung Cheung et al., Getting Started with Mathematica, 2nd Ed. New York: J. Wiley (2005) p. 7.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 221.
  • C. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. 1929/30, No. 1. Translated as "On some applications
  • of Diophantine approximations" by Clemens Fuchs.

Crossrefs

Programs

A102221 Column 0 of triangular matrix A102220, which equals [2*I - A008459]^(-1).

Original entry on oeis.org

1, 1, 5, 55, 1077, 32951, 1451723, 87054773, 6818444405, 675900963271, 82717196780955, 12248810651651333, 2158585005685222491, 446445657799551807541, 107087164031952038620481, 29487141797206760561836055, 9238158011747884080353808245
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2004

Keywords

Comments

a(n) is the number of ways to form an ordered pair of n-permutations and then choose a subset of its common descent set. Cf. A192721. - Geoffrey Critzer, Apr 29 2023

Crossrefs

Row sums of A192722.
Column k=2 of A326322.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)*binomial(n, i)/i!, i=1..n))
        end:
    a:= n-> b(n)*n!:
    seq(a(n), n=0..20);  # Alois P. Heinz, May 11 2016
  • Mathematica
    Rest[CoefficientList[Series[1/(2-BesselJ[0, 2*I*Sqrt[x]]), {x, 0, 20}], x] * Range[0, 20]!^2] (* Vaclav Kotesovec, Mar 02 2014 *)
    m = 20; CoefficientList[1/(2 - BesselI[0, 2 Sqrt[x]]) + O[x]^m, x] Range[0, m - 1]!^2 (* Jean-François Alcover, Jun 11 2019, after Vladeta Jovovic *)
    b[n_] := b[n] = If[n==0, 1, Sum[b[n-i] Binomial[n, i]/i!, {i, 1, n}]];
    a[n_] := b[n] n!;
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2020, after Alois P. Heinz *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(n,k)^2*a(k)))
    
  • Sage
    L = taylor(1/(1-x*hypergeometric((1,),(2,2),x)),x,0,14).list()
    [factorial(i)^2*c for (i,c) in enumerate(L)] # Peter Luschny, Jul 28 2015

Formula

a(n) = Sum_{k=0..n-1} C(n, k)^2*a(k) for n>0, with a(0)=1.
a(n) = A102220(n+k, k)/C(n+k, k)^2 for k>=0.
Sum_{n>=0} a(n)*x^n/n!^2 = 1/(2-BesselI(0,2*sqrt(x))). - Vladeta Jovovic, Jul 17 2006
a(n) ~ c * (n!)^2 / r^n, where r = 0.81712266563155429332453954757369795... is the root of the equation BesselJ(0, 2*I*sqrt(x))=2, and c = 0.833570458821600548332410448635741072476086046022299770387... = 1/(sqrt(r) * BesselI(1, 2*sqrt(r))). - Vaclav Kotesovec, Mar 02 2014, updated Apr 01 2018
From Geoffrey Critzer, Apr 29 2023: (Start)
Sum_{n>=0} a(n)*z^n/(n!)^2 = 1/(2-E(z)) where E(z) = Sum_{n>=0} z^n/(n!)^2.
a(n) = Sum_{k=0..n-1} A192721(n,k)*2^k. (End)

Extensions

Content moved from A192723 to this sequence by Alois P. Heinz, Sep 11 2019

A212855 T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

In other words, there are no "column rises", where a "column rise" means a pair of adjacent columns where each entry in the left column is strictly less than the adjacent entry in the right column.
This is R(n,k,0) in [Abramson-Promislow].
From Petros Hadjicostas, Sep 09 2019: (Start)
As stated above, in the notation of Abramson and Promislow (1978), we have T(n,k) = R(n, k, t=0).
Let P_k be the set of all lists a = (a_1, a_2, ..., a_k) of integers a_i >= 0, i = 1, ..., k, such that 1*a_1 + 2*a_2 + ... + k*a_k = k; i.e., P_k is the set all integer partitions of k. Then |P_k| = A000041(k).
From Eq. (6), p. 248, in Abramson and Promislow (1978), with t=0, we get T(n,k) = Sum_{a in P_k} (-1)^(k - Sum_{j=1..k} a_j) * (a_1 + a_2 + ... + a_k)!/(a_1! * a_2! * ... * a_k!) * (k! / ((1!)^a_1 * (2!)^a_2 * ... * (k!)^a_k))^n.
The integer partitions of k = 1..10 are listed on pp. 831-832 of Abramowitz and Stegun (1964). We see that, for k = 1..6, the corresponding multinomial coefficients k! / ((1!)^a_1 * (2!)^a_2 * ... * (k!)^a_k) are all distinct; that is, A070289(k) = A000041(k) and A309951(k,s) = A325305(k,s) for s = 0..A000041(k). For 7 <= k <= 10, this is not true anymore; i.e., A070289(k) < A000041(k) for 7 <= k <= 10 (and we conjecture that this is the case for all k >= 7).
From the theory of difference equations, we see that Abramson and Promislow's Eq. (6) on p. 248 (with t=0) implies that Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1. For k = 1..5, these recurrences give R. H. Hardin's empirical recurrences shown in the Formula section below.
We also have Sum_{s = 0..A000041(k)} (-1)^s * A309951(k,s) * T(n-s,k) = 0 for n >= A000041(k) + 1, but for k >= 7, the recurrence we get (for column k) may not necessarily be minimal.
To derive the recurrence for row n, let y=0 in Eq. (8), p. 249, of Abramson and Promislow (1978). We get 1 + Sum_{k >= 1} T(n,k)*x^k/(k!)^n = 1/f_n(-x), where f_n(x) = Sum_{i >= 0} (x^i/(i!)^n). Matching coefficients, we get Sum_{s = 1..k} T(n,s) * (-1)^(s-1) * binomial(k,s)^n = 1, from which the recurrence in the Formula section follows.
(End)

Examples

			Some solutions for n=3 and k=4:
  2 1 3 0    1 3 0 2    3 0 2 1    1 3 0 2    1 3 2 0
  2 0 1 3    1 3 0 2    3 1 2 0    1 0 3 2    1 3 0 2
  2 3 0 1    3 0 2 1    2 3 1 0    2 0 3 1    3 1 0 2
Table starts:
  1  1     1         1             1                  1                       1
  1  3    19       211          3651              90921                 3081513
  1  7   163      8983        966751          179781181             53090086057
  1 15  1135    271375     158408751       191740223841         429966316953825
  1 31  7291   7225951   21855093751    164481310134301     2675558106868421881
  1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
		

Crossrefs

Cf. A000012 (row 1), A000275 (row 2), A212856 (row 3), A212857 (row 4), A212858 (row 5), A212859 (row 6), A212860 (row 7).
Cf. A000012 (column 1), A000225 (column 2), A212850 (column 3), A212851 (column 4), A212852 (column 5), A212853 (column 6), A212854 (column 7).
Cf. A000041, A070289 (order of minimal recurrence for column k), A192721, A212806 (main diagonal), A309951, A325305.

Programs

  • Maple
    A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);
    series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;
    seq(add(abs(k), k=%(j,m)), j=1..len) end:
    for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k=0, 1, -add(
          binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))
        end:
    seq(seq(T(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 26 2020
  • Mathematica
    rows = 9;
    row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];
    T = Table[row[n, rows+1], {n, 1, rows}];
    Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)

Formula

Empirical recurrence for column k:
k=1: a(n) = 1*a(n-1).
k=2: a(n) = 3*a(n-1) - 2*a(n-2).
k=3: a(n) = 10*a(n-1) - 27*a(n-2) + 18*a(n-3).
k=4: a(n) = 47*a(n-1) - 718*a(n-2) + 4416*a(n-3) - 10656*a(n-4) + 6912*a(n-5).
k=5: a(n) = 246*a(n-1) - 20545*a(n-2) + 751800*a(n-3) - 12911500*a(n-4) + 100380000*a(n-5) - 304200000*a(n-6) + 216000000*a(n-7).
[All the "empirical" recurrences above are correct. See the comments above.]
From Benoit Jubin, May 29 2012: (Start)
T(n,1) = T(1,n) = 1.
T(n,2) = 2^n - 1 since the only n X 2 matrix with rows permutations of {0,1} which has a column rise is the one where all rows are [0,1].
(k!)^n*(1 - (k-1)/2^n) <= T(n,k) <= (k!)^n (the first inequality is (11) in the Abramson-Promislow reference, the second is trivial). (End)
For r >= 1, A(n, r) = Sum_{k=0..n} |[x^k] n!^r [z^n] S(r, z)^x| where S(r, z) = Sum_{k>=0} z^k/k!^r. - Peter Luschny, Feb 27 2018
From Petros Hadjicostas, Sep 09 2019: (Start)
Recurrence for column k: Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1.
Recurrence for row n: T(n,k) = (-1)^(k-1) + Sum_{s = 1..k-1} T(n,s) * (-1)^(k-s-1) * binomial(k,s)^n for k >= 1.
(End)
Sum_{k>=1} T(n,k)*z^k/(k!)^n = 1/E_n(-z) -1 where E_n(z) = Sum_{k>=0} z^k/(k!)^n. - Geoffrey Critzer, Apr 28 2023

A212856 Number of 3 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 1, 7, 163, 8983, 966751, 179781181, 53090086057, 23402291822743, 14687940716402023, 12645496977257273257, 14490686095184389113277, 21557960797148733086439949, 40776761007750226749220637461, 96332276574683758035941025907591
Offset: 0

Views

Author

R. H. Hardin, May 28 2012

Keywords

Examples

			Some solutions for n=3:
  2 1 0   2 0 1   1 2 0   0 2 1   2 0 1   2 1 0   2 1 0
  0 2 1   2 0 1   0 2 1   2 1 0   2 1 0   2 1 0   2 0 1
  0 2 1   2 1 0   2 0 1   2 0 1   0 1 2   1 2 0   2 0 1
		

Crossrefs

Programs

  • Maple
    A212856 := proc(n) sum(z^k/k!^3, k = 0..infinity);
    series(%^x, z=0, n+1): n!^3*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
    seq(A212856(n), n=0..14); # Peter Luschny, May 27 2017
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, -add(
          binomial(n, j)^3*(-1)^j*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Apr 26 2020
  • Mathematica
    f[0] = 1; f[n_] := f[n] = Sum[(-1)^(n+k+1)*f[k]*Binomial[n, k]^2/(n-k)!, {k, 0, n-1}]; a[n_] := f[n]*n!; Array[a, 14] (* Jean-François Alcover, Feb 27 2018, after Daniel Suteu *)

Formula

a(n) = f(n) * n!, where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n+k+1) * f(k) * binomial(n, k)^2 / (n-k)!. - Daniel Suteu, Feb 23 2018
a(n) = (n!)^3 * [x^n] 1 / (1 + Sum_{k>=1} (-x)^k / (k!)^3). - Seiichi Manyama, Jul 18 2020
a(n) ~ c * n!^3 / r^n, where r = 1.16151549806386358435938834554462085598002... is the root of the equation HypergeometricPFQ[{}, {1, 1}, -r] = 0 and c = 1.182760720067731330743886867947078139186402925891650811631774628... - Vaclav Kotesovec, Sep 16 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Apr 26 2020

A192721 The number of pairs of permutations in the product group S_n X S_n with k common descents, n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 3, 1, 19, 16, 1, 211, 299, 65, 1, 3651, 7346, 3156, 246, 1, 90921, 237517, 160322, 28722, 917, 1, 3081513, 9903776, 9302567, 2864912, 245407, 3424, 1, 136407699, 520507423, 632274183, 288196659, 46261609, 2041965, 12861, 1
Offset: 1

Views

Author

Peter Bala, Jul 11 2011

Keywords

Comments

Let S_n denote the symmetric group on {1,2,...,n}. A permutation p_1p_2...p_n in S_n has a descent at position i (1 <= i <= n-1) if p_i > p_(i+1). The Eulerian numbers A008292 (with an offset of 0 in the column indexing) enumerate permutations by descents. We define a pair of permutations p_1p_2...p_n and q_1q_2...q_n to have a common descent at position i (1 <= i <= n-1) if both p_i > p_(i+1) and q_i > q_(i+1). For example, the permutations (3241) and (4231) in S_4 have common descents at positions i = 1 and i = 3. The table entry T(n,k) gives the number of pairs of permutations in the Cartesian product S_n x S_n with k common descents.
The generalized Stirling numbers associated with this triangle is A061691. See also A192722.

Examples

			The triangle begins
n/k|.....0.......1.......2......3....4.....5
============================================
..1|.....1
..2|.....3.......1
..3|....19......16.......1
..4|...211.....299......65......1
..5|..3651....7346....3156....246....1
..6|.90921..237517..160322..28722..917.....1
..
Row 3 entries T(3,0) = 19, T(3,1) = 16 and T(3,2) = 1 can be read from the following table:
============================================
Number of common descents in S_3 x S_3
============================================
.
...|.123...132...213...231...312...321
======================================
123|..0.....0.....0.....0.....0.....0
132|..0.....1.....0.....1.....0.....1
213|..0.....0.....1.....0.....1.....1
231|..0.....1.....0.....1.....0.....1
312|..0.....0.....1.....0.....1.....1
321|..0.....1.....1.....1.....1.....2
Matrix identity A192721 * A007318 = row reverse of A192722:
/...1................\ /..1..............\
|...3.....1...........||..1....1..........|
|..19....16.....1.....||..1....2....1.....|
|.211...299....65....1||..1....3....3....1|
|.....................||..................|
=
/...1...................\
|...4......1.............|
|..36.....18......1......|
|.576....432.....68.....1|
|........................|
		

Crossrefs

Cf. A000275 (first column), A001044 (row sums), A008292, A008459, A061691, A192722.

Programs

  • Maple
    #A192721
    #J = sum {n>=0} z^n/n!^2
    J := unapply(BesselJ(0, 2*I*sqrt(z)),z):
    G := (1-x)/(-x + J(z*(x-1))):
    Gser := simplify(series(G, z = 0, 12)):
    for n from 1 to 10 do
    P[n] := n!^2*sort(coeff(Gser, z, n)) od:
    for n from 1 to 10 do seq(coeff(P[n],x,k), k = 0..n-1) od;
    # gives sequence in triangular form
  • Mathematica
    max = 9; j[z_] := BesselJ[0, 2 I*Sqrt[z]]; g = (1 - x)/(-x + j[z*(x - 1)]); gser = Series[g, {z, 0, max}]; p[n_] := n!^2 Coefficient[ gser, z, n]; a[n_, k_] := Coefficient[ p[n], x, k]; Flatten[ Table[ a[n, k], {n, 1, max-1}, {k, 0, n-1}]] (* Jean-François Alcover, Dec 13 2011, after Maple *)

Formula

Generating function (Carlitz et al. 1976): Let J(z) = sum {n>=0} z^n/n!^2. Then (1-x)/(J(z*(x-1))-x) = 1 + sum {n>=1} (sum {k = 0..n-1} T(n,k)*x^k)*z^n/n!^2 = 1 + z + (3+x)*z^2/2!^2 + (19+16*x+x^2)*z^3/3!^2 + .... Define a polynomial sequence {p(n,x) }n>=0 by means of the generating function J(z)^x = sum {n>=0} p(n,x)*z^n/n!^2. The generalized Eulerian polynomials associated with the sequence {p(n,x)} as defined by [Koutras, 1994] are the polynomials sum {k = 0..n-1} T(n,k)*x^(n-k).
Relations with other sequences: The first column of the array (x*I-A008459)^-1 (I the identity matrix) is a sequence of rational functions whose numerator polynomials are the row generating polynomials for the present triangle. The change of variable x -> (x+1)/x followed by z -> x*z transforms the above bivariate generating function (1-x)/(J(z*(x-1))-x) into 1/(1+x-x*J(z)), which is the generating function for A192722. Equivalently, if we postmultiply the present triangle by Pascal's triangle A007318 we obtain the row reversed form of A192722: A192721 * A007318 = row reverse of A192722.
Row n sum = n!^2 = A001044(n).
First column [1,3,19,211,3651,...] = A000275 (apart from initial term).

A212857 Number of 4 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 1, 15, 1135, 271375, 158408751, 191740223841, 429966316953825, 1644839120884915215, 10079117505143103766735, 94135092186827772028779265, 1287215725538576868883610346465, 24929029117106417518788960414909025, 664978827664071363541997348802227351425
Offset: 0

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

From Petros Hadjicostas, Sep 08 2019: (Start)
We generalize Daniel Suteu's recurrence from A212856. Notice first that, in the notation of Abramson and Promislow (1978), we have a(n) = R(m=4, n, t=0).
Letting y=0 in Eq. (8), p. 249, of Abramson and Promislow (1978), we get 1 + Sum_{n >= 1} R(m,n,t=0)*x^n/(n!)^m = 1/f(-x), where f(x) = Sum_{i >= 0} (x^i/(i!)^m). Matching coefficients, we get Sum_{s = 1..n} R(m, s, t=0) * (-1)^(s-1) * binomial(n,s)^m = 1, from which the recurrence in the Formula section follows.
(End)

Examples

			Some solutions for n=3:
  1 2 0   1 0 2   1 0 2   2 1 0   2 0 1   2 1 0   1 0 2
  2 1 0   1 0 2   0 2 1   0 2 1   2 1 0   1 0 2   2 1 0
  1 2 0   2 1 0   1 0 2   0 1 2   2 1 0   2 1 0   1 2 0
  2 1 0   0 1 2   2 1 0   2 1 0   1 0 2   2 1 0   2 1 0
		

Crossrefs

Programs

  • Maple
    A212857 := proc(n) sum(z^k/k!^4, k = 0..infinity);
    series(%^x, z=0, n+1): n!^4*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
    seq(A212857(n), n=1..13); # Peter Luschny, May 27 2017
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
    a[n_] := T[4, n];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)

Formula

a(n) = (-1)^(n-1) + Sum_{s = 1..n-1} a(s) * (-1)^(n-s-1) * binomial(n,s)^m for n >= 2 with a(1) = 1. Here m = 4. - Petros Hadjicostas, Sep 08 2019
a(n) = (n!)^4 * [x^n] 1 / (1 + Sum_{k>=1} (-x)^k / (k!)^4). (see Petros Hadjicostas's comment on Sep 08 2019) - Seiichi Manyama, Jul 18 2020

Extensions

a(0)=1 prepended by Seiichi Manyama, Jul 18 2020

A212858 Number of 5 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 1, 31, 7291, 7225951, 21855093751, 164481310134301, 2675558106868421881, 84853928323286139485791, 4849446032811641059203617551, 469353176282647626764795665676281, 73159514984813223626195834388445570381, 17619138865526260905773841471696025142373661
Offset: 0

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

From Petros Hadjicostas, Sep 08 2019: (Start)
We generalize Daniel Suteu's recurrence from A212856. Notice first that, in the notation of Abramson and Promislow (1978), we have a(n) = R(m=5, n, t=0).
Letting y=0 in Eq. (8), p. 249, of Abramson and Promislow (1978), we get 1 + Sum_{n >= 1} R(m,n,t=0)*x^n/(n!)^m = 1/f(-x), where f(x) = Sum_{i >= 0} (x^i/(i!)^m). Matching coefficients, we get Sum_{s = 1..n} R(m, s, t=0) * (-1)^(s-1) * binomial(n,s)^m = 1, from which the recurrence in the Formula section follows.
(End)

Examples

			Some solutions for n=3:
  2 0 1   0 1 2   0 2 1   0 2 1   1 2 0   0 2 1   2 0 1
  2 0 1   2 1 0   0 1 2   0 2 1   0 1 2   1 2 0   2 0 1
  0 1 2   2 0 1   0 2 1   2 1 0   0 1 2   0 1 2   2 1 0
  2 0 1   0 1 2   1 2 0   0 2 1   1 0 2   2 1 0   1 0 2
  1 2 0   0 2 1   2 1 0   1 2 0   0 1 2   2 1 0   2 1 0
		

Crossrefs

Programs

  • Maple
    A212858 := proc(n) sum(z^k/k!^5, k = 0..infinity);
    series(%^x, z=0, n+1): n!^5*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
    seq(A212858(n), n=1..12); # Peter Luschny, May 27 2017
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
    a[n_] := T[5, n];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)

Formula

a(n) = (-1)^(n-1) + Sum_{s = 1..n-1} a(s) * (-1)^(n-s-1) * binomial(n,s)^m for n >= 2 with a(1) = 1. Here m = 5. - Petros Hadjicostas, Sep 08 2019
a(n) = (n!)^5 * [x^n] 1 / (1 + Sum_{k>=1} (-x)^k / (k!)^5). (see Petros Hadjicostas's comment on Sep 08 2019) - Seiichi Manyama, Jul 18 2020

Extensions

a(0)=1 prepended by Seiichi Manyama, Jul 18 2020

A212859 Number of 6 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 1, 63, 45199, 182199871, 2801736968751, 128645361626874561, 14895038886845467640193, 3842738508408709445398181439, 2009810719756197663340563540778591, 1977945985139308994141721986912910579313, 3448496643225334129810790241492300508936547073
Offset: 0

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

From Petros Hadjicostas, Sep 08 2019: (Start)
We generalize Daniel Suteu's recurrence from A212856. Notice first that, in the notation of Abramson and Promislow (1978), we have a(n) = R(m=6, n, t=0).
Letting y=0 in Eq. (8), p. 249, of Abramson and Promislow (1978), we get 1 + Sum_{n >= 1} R(m,n,t=0)*x^n/(n!)^m = 1/f(-x), where f(x) = Sum_{i >= 0} (x^i/(i!)^m). Matching coefficients, we get Sum_{s = 1..n} R(m, s, t=0) * (-1)^(s-1) * binomial(n,s)^m = 1, from which the recurrence in the Formula section follows.
(End)

Examples

			Some solutions for n=3:
  2 0 1   1 0 2   2 0 1   0 1 2   2 1 0   0 1 2   0 1 2
  0 1 2   0 2 1   1 2 0   0 1 2   1 2 0   0 1 2   0 1 2
  1 0 2   2 0 1   2 0 1   2 0 1   1 0 2   1 0 2   2 0 1
  0 2 1   0 1 2   2 0 1   2 0 1   0 1 2   1 2 0   0 1 2
  1 2 0   2 0 1   0 1 2   1 2 0   1 0 2   0 1 2   1 2 0
  2 1 0   1 0 2   0 2 1   0 2 1   0 1 2   2 0 1   1 2 0
		

Crossrefs

Programs

  • Maple
    A212859 := proc(n) sum(z^k/k!^6, k = 0..infinity);
    series(%^x, z=0, n+1): n!^6*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
    seq(A212859(n), n=1..11); # Peter Luschny, May 27 2017
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
    a[n_] := T[6, n];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)

Formula

a(n) = (-1)^(n-1) + Sum_{s = 1..n-1} a(s) * (-1)^(n-s-1) * binomial(n,s)^m for n >= 2 with a(1) = 1. Here m = 6. - Petros Hadjicostas, Sep 08 2019
a(n) = (n!)^6 * [x^n] 1 / (1 + Sum_{k>=1} (-x)^k / (k!)^6). (see Petros Hadjicostas's comment on Sep 08 2019) - Seiichi Manyama, Jul 18 2020

Extensions

a(0)=1 prepended by Seiichi Manyama, Jul 18 2020
Showing 1-10 of 27 results. Next