A000275
Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of permutations with rise/rise forbidden.
Original entry on oeis.org
1, 1, 3, 19, 211, 3651, 90921, 3081513, 136407699, 7642177651, 528579161353, 44237263696473, 4405990782649369, 515018848029036937, 69818743428262376523, 10865441556038181291819, 1923889742567310611949459, 384565973956329859109177427, 86180438505835750284241676121
Offset: 0
From _Peter Bala_, Aug 08 2011: (Start)
a(3) = 19: The 19 pairs of permutations in the group S_3 x S_3 with no common rises correspond to the zero entries in the table below.
======================================
Number of common rises in S_3 x S_3
======================================
| 123 132 213 231 312 321
======================================
123| 2 1 1 1 1 0
132| 1 1 0 1 0 0
213| 1 0 1 0 1 0
231| 1 1 0 1 0 0
312| 1 0 1 0 1 0
321| 0 0 0 0 0 0
(End)
G.f. = 1 + x + 3*x^2 + 19*x^3 + 211*x^4 + 3651*x^5 + 90921*x^6 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..261
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (8) (with t=0 and m=2) on p. 249.
- Leonid Bedratyuk and Nataliia Luno, Connection problems for the generalized hypergeometric Appell polynomials, Carpathian Math. Publ. (2020) Vol. 12, No. 1, 10-18.
- L. Carlitz, The coefficients of the reciprocal of J_0(x), Archiv. Math. 6 (1955), 121-127.
- L. Carlitz, Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc. 80(5) (1974), 881-884.
- L. Carlitz, Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc. 80(5) (1974), 881-884. [Annotated scanned copy]
- L. Carlitz, N. J. A. Sloane, and C. L. Mallows, Correspondence, 1975.
- Jan Geuenich, Tilting modules for the Auslander algebra of K[x]/(xn), arXiv:1803.10707 [math.RT], 2018.
- Gunnar Thor Magnússon, The inner product on exterior powers of a complex vector space, arXiv preprint arXiv:1401.4048 [math.AG], 2014.
- R. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly 99(3) (1992), 231-238; see page 232. MR1216210 (95b:11008)
- J. Riordan, Inverse relations and combinatorial identities, Amer. Math. Monthly, 71 (1964), 485-498.
- Jonathan D. H. Smith, Commutative Moufang loops and Bessel functions, Invent. Math. 67(1) (1982), 173-187.
- Index entries for sequences related to Bessel functions or polynomials
-
A000275 := proc(n) sum(z^k/k!^2, k = 0..infinity);
series(%^x, z=0, n+1): n!^2*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A000275(n), n=0..17); # Peter Luschny, May 27 2017
-
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(r+n+1)*Binomial[n, r]^2 a[r], {r, 0, n-1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 05 2013 *)
CoefficientList[Series[1/BesselJ[0,Sqrt[4*x]], {x, 0, 20}], x]* Range[0, 20]!^2 (* Vaclav Kotesovec, Mar 02 2014 *)
a[ n_] := If[ n < 0, 0, (n! 2^n)^2 SeriesCoefficient[ 1 / BesselJ[ 0, x], {x, 0, 2 n}]]; (* Michael Somos, Aug 20 2015 *)
-
{a(n) = if( n<0, 0, n!^2 * 4^n * polcoeff( 1 / besselj(0, x + x * O(x^(2*n))), 2*n))}; /* Michael Somos, May 17 2004 */
A102221
Column 0 of triangular matrix A102220, which equals [2*I - A008459]^(-1).
Original entry on oeis.org
1, 1, 5, 55, 1077, 32951, 1451723, 87054773, 6818444405, 675900963271, 82717196780955, 12248810651651333, 2158585005685222491, 446445657799551807541, 107087164031952038620481, 29487141797206760561836055, 9238158011747884080353808245
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-i)*binomial(n, i)/i!, i=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..20); # Alois P. Heinz, May 11 2016
-
Rest[CoefficientList[Series[1/(2-BesselJ[0, 2*I*Sqrt[x]]), {x, 0, 20}], x] * Range[0, 20]!^2] (* Vaclav Kotesovec, Mar 02 2014 *)
m = 20; CoefficientList[1/(2 - BesselI[0, 2 Sqrt[x]]) + O[x]^m, x] Range[0, m - 1]!^2 (* Jean-François Alcover, Jun 11 2019, after Vladeta Jovovic *)
b[n_] := b[n] = If[n==0, 1, Sum[b[n-i] Binomial[n, i]/i!, {i, 1, n}]];
a[n_] := b[n] n!;
a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2020, after Alois P. Heinz *)
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(n,k)^2*a(k)))
-
L = taylor(1/(1-x*hypergeometric((1,),(2,2),x)),x,0,14).list()
[factorial(i)^2*c for (i,c) in enumerate(L)] # Peter Luschny, Jul 28 2015
A212855
T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1
Some solutions for n=3 and k=4:
2 1 3 0 1 3 0 2 3 0 2 1 1 3 0 2 1 3 2 0
2 0 1 3 1 3 0 2 3 1 2 0 1 0 3 2 1 3 0 2
2 3 0 1 3 0 2 1 2 3 1 0 2 0 3 1 3 1 0 2
Table starts:
1 1 1 1 1 1 1
1 3 19 211 3651 90921 3081513
1 7 163 8983 966751 179781181 53090086057
1 15 1135 271375 158408751 191740223841 429966316953825
1 31 7291 7225951 21855093751 164481310134301 2675558106868421881
1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
- Alois P. Heinz, Antidiagonals n = 1..45 (first 20 antidiagonals from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554); see Eqs. (6) on p. 248 and (8) on p. 249 with t=0.
- Yifei Li and Sheila Sundaram, Homology of Segre products of Boolean and subspace lattices, arXiv:2408.08421 [math.CO], 2024. See p. 17.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
-
A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);
series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;
seq(add(abs(k), k=%(j,m)), j=1..len) end:
for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1, -add(
binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))
end:
seq(seq(T(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Apr 26 2020
-
rows = 9;
row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];
T = Table[row[n, rows+1], {n, 1, rows}];
Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
A061691
Triangle of generalized Stirling numbers.
Original entry on oeis.org
1, 1, 2, 1, 9, 6, 1, 34, 72, 24, 1, 125, 650, 600, 120, 1, 461, 5400, 10500, 5400, 720, 1, 1715, 43757, 161700, 161700, 52920, 5040, 1, 6434, 353192, 2361016, 4116000, 2493120, 564480, 40320, 1, 24309, 2862330, 33731208, 96960024, 97161120, 39372480, 6531840, 362880
Offset: 1
Triangle begins:
1;
1,2;
1,9,6;
1,34,72,24;
1,125,650,600,120;
...
T(4,2) = 34:
There are 7 partitions of the set {1,2,3,4} into 2 blocks. The four partitions {1,2,3}{4}, {1,2,4}{3}, {1,3,4}{2} and {2,3,4}{1} give rise to 4*4 = 16 uniform block permutations while the remaining 3 partitions {1,2}{3,4}, {1,3}{2,4} and {1,4}{2,3} give 2!*3*3 = 18 uniform block permutations : thus in total there are 16+18 = 34 block permutations between the set partitions of {1,2,3,4} into 2 blocks.
- Alois P. Heinz, Rows n = 1..141, flattened
- M. Aguiar and R. C. Orellana, The Hopf algebra of uniform block permutations, 17th International Conference on Formal Power Series and Algebraic Combinatorics, Taormina, July 2005.
- D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36 (1999), 413-432.
- D. G. Fitzgerald, A presentation for the monoid of uniform block permutations, Bull. Austral. Math. Soc. 68 (2003), 317-324.
- A. T. Irish, F. Quitin, U. Madhow, and M. Rodwell, Achieving multiple degrees of freedom in long-range mm-wave MIMO channels using randomly distributed relays, 2014.
- I. P. Lankham, Patience Sorting and Its Generalizations, arXiv:0705.4524 [math.CO], 2007.
- J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
-
#A061691
#J = sum {n>=0} z^n/n!^2
J := BesselJ(0, 2*i*sqrt(z)):
G := exp(x*(J(z)-1)):
Gser := simplify(series(G, z = 0, 12)):
for n from 1 to 10 do
P[n] := n!^2*sort(coeff(Gser, z, n)) od:
for n from 1 to 10 do seq(coeff(P[n],x,k), k = 1..n) od;
# yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1,
add(x*b(n-i)*binomial(n, i)/i!, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i)/i!, i=1..n))(b(n)*n!):
seq(T(n), n=1..12); # Alois P. Heinz, Sep 10 2019
-
max = 9; g := Exp[x*(BesselI[0, 2*Sqrt[z]] - 1)]; gser = Series[g, {z, 0, max}, {x, 0, max}]; t[n_, k_] := n!^2*SeriesCoefficient[ gser // Normal, {z, 0, n}, {x, 0, k}]; Flatten[ Table[ t[n, k], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Apr 04 2012, after Maple *)
A340986
Square array read by descending antidiagonals. T(n,k) is the number of ways to separate the columns of an ordered pair of n-permutations (that have been written as a 2 X n array, one atop the other) into k cells so that no cell has a column rise. For n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 19, 0, 1, 4, 21, 92, 211, 0, 1, 5, 36, 255, 1354, 3651, 0, 1, 6, 55, 544, 4725, 29252, 90921, 0, 1, 7, 78, 995, 12196, 123903, 873964, 3081513, 0, 1, 8, 105, 1644, 26215, 377904, 4368729, 34555880, 136407699, 0
Offset: 0
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 19, 92, 255, 544, 995, ...
0, 211, 1354, 4725, 12196, 26215, ...
0, 3651, 29252, 123903, 377904, 939155, ...
- R. P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Section 3.13.
-
T:= (n, k)-> n!^2*coeff(series(1/BesselJ(0, 2*sqrt(x))^k, x, n+1), x, n):
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 02 2021
-
nn = 6; B[n_] := n!^2; e[x_] := Sum[x^n/B[n], {n, 0, nn}];
Table[Table[B[n], {n, 0, nn}] PadRight[CoefficientList[Series[e[-x]^-k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Grid
A192722
T(n,k) = Sum of multinomial(n; n_1,n_2,...,n_k)^2, where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts.
Original entry on oeis.org
1, 1, 4, 1, 18, 36, 1, 68, 432, 576, 1, 250, 3900, 14400, 14400, 1, 922, 32400, 252000, 648000, 518400, 1, 3430, 262542, 3880800, 19404000, 38102400, 25401600, 1, 12868, 2119152, 56664384, 493920000, 1795046400, 2844979200, 1625702400
Offset: 1
The triangle begins
n/k|..1.....2.......3........4........5........6
================================================
.1.|..1
.2.|..1.....4
.3.|..1....18.....36
.4.|..1....68.....432......576
.5.|..1...250....3900....14400....14400
.6.|..1...922...32400...252000...648000...518400
...
T(4,2) = 68:
There are 3 compositions of 4 into 2 parts, namely, 4 = 2 + 2 = 1 + 3 = 3 + 1; hence
T(4,2) = (4!/(2!*2!))^2 + (4!/(1!*3!))^2 + (4!/(3!*1!))^2
= 36 + 16 + 16 = 68.
Matrix identity: A192721 * Pascal's triangle = row reverse of A192722:
/...1................\ /..1..............\
|...3.....1...........||..1....1..........|
|..19....16.....5.....||..1....2....1.....|
|.211...299....65....1||..1....3....3....1|
|.....................||..................|
=
/...1...................\
|...4......1.............|
|..36.....18......1......|
|.576....432.....68.....1|
|........................|
-
J := unapply(BesselJ(0, 2*sqrt(-1)*sqrt(z)), z):
G := 1/(1-x*(J(z)-1)):
Gser := simplify(series(G, z = 0, 15)):
for n from 1 to 14 do
P[n] := n!^2*sort(coeff(Gser, z, n)) od:
for n from 1 to 14 do seq(coeff(P[n], x, k), k = 1..n) od;
# yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(x*b(n-i)/i!^2, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)*n!^2):
seq(T(n), n=1..14); # Alois P. Heinz, Sep 10 2019
-
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x b[n-i]/i!^2, {i, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n] n!^2];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
A287315
Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 16, 19, 0, 1, 65, 299, 211, 0, 1, 246, 3156, 7346, 3651, 0, 1, 917, 28722, 160322, 237517, 90921, 0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513, 0, 1, 12861, 2041965, 46261609, 288196659, 632274183, 520507423, 136407699
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1, 3]
3: [0, 1, 16, 19]
4: [0, 1, 65, 299, 211]
5: [0, 1, 246, 3156, 7346, 3651]
6: [0, 1, 917, 28722, 160322, 237517, 90921]
7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513]
...
Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
-
Delta := proc(a, n) local del, A, u;
A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1));
for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end:
A287315_row := n -> Delta(A287314_poly(n), n):
for n from 0 to 7 do A287315_row(n) od;
A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
for n from 0 to 4 do A287315_eulerian(n,x) od;
A334257
Triangle read by rows: T(n,k) is the number of ordered pairs of n-permutations with exactly k common double descents, n>=0, 0<=k<=max{0,n-2}.
Original entry on oeis.org
1, 1, 4, 35, 1, 545, 30, 1, 13250, 1101, 48, 1, 463899, 51474, 2956, 70, 1, 22106253, 3070434, 217271, 7545, 96, 1, 1375915620, 229528818, 19372881, 864632, 20322, 126, 1, 108386009099, 21107789247, 2070917370, 113587335, 3530099, 61089, 160, 1
Offset: 0
T(4,1) = 30: There are 9 such ordered pairs formed from the permutations 3421,2431,1432. There are 9 such ordered pairs formed from the permutations 4312,4213,3214. Then pairing each of these 6 permutations with 4321 gives 12 more ordered pairs with exactly 1 common double descent. 9+9+12 = 30.
Triangle T(n,k) begins:
1;
1;
4;
35, 1;
545, 30, 1;
13250, 1101, 48, 1;
463899, 51474, 2956, 70, 1;
...
- R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.
-
b:= proc(n, u, v, t) option remember; expand(`if`(n=0, 1,
add(add(b(n-1, u-j, v-i, x)*t, i=1..v)+
add(b(n-1, u-j, v+i-1, 1), i=1..n-v), j=1..u)+
add(add(b(n-1, u+j-1, v-i, 1), i=1..v)+
add(b(n-1, u+j-1, v+i-1, 1), i=1..n-v), j=1..n-u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2, 1)):
seq(T(n), n=0..10); # Alois P. Heinz, Apr 26 2020
-
nn = 8; a = Apply[Plus,Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> y - 1; Map[Select[#, # > 0 &] &,
Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Grid
A334394
Triangle read by rows: T(n,k) is the number of ordered triples of n-permutations with exactly k common descents, n>=0, 0<=k<=max(0,n-1).
Original entry on oeis.org
1, 1, 7, 1, 163, 52, 1, 8983, 4499, 341, 1, 966751, 660746, 98256, 2246, 1, 179781181, 155729277, 35677082, 2045282, 15177, 1, 53090086057, 55690144728, 17446464519, 1754605504, 42658239, 104952, 1, 23402291822743, 28825420903351, 11518335730323, 1717307782339, 84058424389, 905365701, 739153, 1
Offset: 0
Triangle begins:
1;
1;
7, 1;
163, 52, 1;
8983, 4499, 341, 1;
966751, 660746, 98256, 2246, 1;
...
- R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.
-
T:= (n, k)-> n!^3*coeff(series(coeff(series((y-1)/(y-add((x*
(y-1))^j/j!^3, j=0..n)), y, k+1), y, k), x, n+1), x, n):
seq(seq(T(n,k), k=0..max(0, n-1)), n=0..10); # Alois P. Heinz, Apr 28 2020
-
nn = 6; e3[x_] := Sum[x^n/n!^3, {n, 0, nn}];Drop[Map[Select[#, # > 0 &] &,
Table[n!^3, {n, 0, nn}] CoefficientList[Series[(y - 1)/(y - e3[x (y - 1)]), {x, 0, nn}], {x, y}]], 1] // Grid
A362589
Triangular array read by rows. T(n,k) is the number of ways to form an ordered pair of n-permutations and then choose a size k subset of its common descent set, n >= 0, 0 <= k <= max{0,n-1}.
Original entry on oeis.org
1, 1, 4, 1, 36, 18, 1, 576, 432, 68, 1, 14400, 14400, 3900, 250, 1, 518400, 648000, 252000, 32400, 922, 1, 25401600, 38102400, 19404000, 3880800, 262542, 3430, 1, 1625702400, 2844979200, 1795046400, 493920000, 56664384, 2119152, 12868, 1
Offset: 0
Triangle begins:
1;
1;
4, 1;
36, 18, 1;
576, 432, 68, 1;
14400, 14400, 3900, 250, 1;
...
-
nn = 8; B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[u/(u + 1 - e[u z]), {z, 0, nn}], {z, u}]] // Flatten
Showing 1-10 of 10 results.
Comments