cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000275 Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of permutations with rise/rise forbidden.

Original entry on oeis.org

1, 1, 3, 19, 211, 3651, 90921, 3081513, 136407699, 7642177651, 528579161353, 44237263696473, 4405990782649369, 515018848029036937, 69818743428262376523, 10865441556038181291819, 1923889742567310611949459, 384565973956329859109177427, 86180438505835750284241676121
Offset: 0

Views

Author

Keywords

Comments

a(n) has the Lucas property, namely a(n) is congruent to a(n_0)a(n_1)...a(n_k) modulo p for any prime p where n_0,n_1,... are the base p digits of n. (Carlitz via McIntosh)

Examples

			From _Peter Bala_, Aug 08 2011: (Start)
a(3) = 19: The 19 pairs of permutations in the group S_3 x S_3 with no common rises correspond to the zero entries in the table below.
  ======================================
   Number of common rises in S_3 x S_3
  ======================================
     | 123   132   213   231   312   321
  ======================================
  123|  2     1     1     1     1     0
  132|  1     1     0     1     0     0
  213|  1     0     1     0     1     0
  231|  1     1     0     1     0     0
  312|  1     0     1     0     1     0
  321|  0     0     0     0     0     0
(End)
G.f. = 1 + x + 3*x^2 + 19*x^3 + 211*x^4 + 3651*x^5 + 90921*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 2 of A212855.
Cf. A055133 (absolute value of column 0 of triangle), A192721 (column 1), A115368.
Column k=1 of A340986.

Programs

  • Maple
    A000275 := proc(n) sum(z^k/k!^2, k = 0..infinity);
    series(%^x, z=0, n+1): n!^2*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
    seq(A000275(n), n=0..17); # Peter Luschny, May 27 2017
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(r+n+1)*Binomial[n, r]^2 a[r], {r, 0, n-1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 05 2013 *)
    CoefficientList[Series[1/BesselJ[0,Sqrt[4*x]], {x, 0, 20}], x]* Range[0, 20]!^2 (* Vaclav Kotesovec, Mar 02 2014 *)
    a[ n_] := If[ n < 0, 0, (n! 2^n)^2 SeriesCoefficient[ 1 / BesselJ[ 0, x], {x, 0, 2 n}]]; (* Michael Somos, Aug 20 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n!^2 * 4^n * polcoeff( 1 / besselj(0, x + x * O(x^(2*n))), 2*n))}; /* Michael Somos, May 17 2004 */

Formula

a(n) = Sum_{r=0..n-1} (-1)^(r+n+1) binomial(n, r)^2 a(r), if n > 0.
Sum_{n>=0} a(n) * x^n / n!^2 = 1 / J_0(sqrt(4*x)). - _Michael Somos, May 17 2004
From Peter Bala, Aug 08 2011: (Start)
Conjectural formula: 1 = Sum_{n>=0} a(n)*x^n*Sum_{k>=0} binomial(n+k,k)^2*(-x)^k.
Apart from the initial term, first column of A192721. (End)
E.g.f.: 1/J_0(sqrt(4*x)) = 1 + x/Q(0), where Q(k) = (k+1)^2 - x + (k+1)^2*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2013
a(n) ~ c * (n!)^2 / r^n, where r = (1/4)*BesselJZero[0,1]^2 = 1.4457964907366961302939989396139517587678604516... and c = 1/(sqrt(r) * BesselJ(1, 2*sqrt(r))) = 1.60197469692804662664846689139151227422675123376219... - Vaclav Kotesovec, Mar 02 2014, updated Apr 01 2018

Extensions

More terms from Christian G. Bower, Apr 25 2000

A102221 Column 0 of triangular matrix A102220, which equals [2*I - A008459]^(-1).

Original entry on oeis.org

1, 1, 5, 55, 1077, 32951, 1451723, 87054773, 6818444405, 675900963271, 82717196780955, 12248810651651333, 2158585005685222491, 446445657799551807541, 107087164031952038620481, 29487141797206760561836055, 9238158011747884080353808245
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2004

Keywords

Comments

a(n) is the number of ways to form an ordered pair of n-permutations and then choose a subset of its common descent set. Cf. A192721. - Geoffrey Critzer, Apr 29 2023

Crossrefs

Row sums of A192722.
Column k=2 of A326322.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)*binomial(n, i)/i!, i=1..n))
        end:
    a:= n-> b(n)*n!:
    seq(a(n), n=0..20);  # Alois P. Heinz, May 11 2016
  • Mathematica
    Rest[CoefficientList[Series[1/(2-BesselJ[0, 2*I*Sqrt[x]]), {x, 0, 20}], x] * Range[0, 20]!^2] (* Vaclav Kotesovec, Mar 02 2014 *)
    m = 20; CoefficientList[1/(2 - BesselI[0, 2 Sqrt[x]]) + O[x]^m, x] Range[0, m - 1]!^2 (* Jean-François Alcover, Jun 11 2019, after Vladeta Jovovic *)
    b[n_] := b[n] = If[n==0, 1, Sum[b[n-i] Binomial[n, i]/i!, {i, 1, n}]];
    a[n_] := b[n] n!;
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2020, after Alois P. Heinz *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(n,k)^2*a(k)))
    
  • Sage
    L = taylor(1/(1-x*hypergeometric((1,),(2,2),x)),x,0,14).list()
    [factorial(i)^2*c for (i,c) in enumerate(L)] # Peter Luschny, Jul 28 2015

Formula

a(n) = Sum_{k=0..n-1} C(n, k)^2*a(k) for n>0, with a(0)=1.
a(n) = A102220(n+k, k)/C(n+k, k)^2 for k>=0.
Sum_{n>=0} a(n)*x^n/n!^2 = 1/(2-BesselI(0,2*sqrt(x))). - Vladeta Jovovic, Jul 17 2006
a(n) ~ c * (n!)^2 / r^n, where r = 0.81712266563155429332453954757369795... is the root of the equation BesselJ(0, 2*I*sqrt(x))=2, and c = 0.833570458821600548332410448635741072476086046022299770387... = 1/(sqrt(r) * BesselI(1, 2*sqrt(r))). - Vaclav Kotesovec, Mar 02 2014, updated Apr 01 2018
From Geoffrey Critzer, Apr 29 2023: (Start)
Sum_{n>=0} a(n)*z^n/(n!)^2 = 1/(2-E(z)) where E(z) = Sum_{n>=0} z^n/(n!)^2.
a(n) = Sum_{k=0..n-1} A192721(n,k)*2^k. (End)

Extensions

Content moved from A192723 to this sequence by Alois P. Heinz, Sep 11 2019

A212855 T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

In other words, there are no "column rises", where a "column rise" means a pair of adjacent columns where each entry in the left column is strictly less than the adjacent entry in the right column.
This is R(n,k,0) in [Abramson-Promislow].
From Petros Hadjicostas, Sep 09 2019: (Start)
As stated above, in the notation of Abramson and Promislow (1978), we have T(n,k) = R(n, k, t=0).
Let P_k be the set of all lists a = (a_1, a_2, ..., a_k) of integers a_i >= 0, i = 1, ..., k, such that 1*a_1 + 2*a_2 + ... + k*a_k = k; i.e., P_k is the set all integer partitions of k. Then |P_k| = A000041(k).
From Eq. (6), p. 248, in Abramson and Promislow (1978), with t=0, we get T(n,k) = Sum_{a in P_k} (-1)^(k - Sum_{j=1..k} a_j) * (a_1 + a_2 + ... + a_k)!/(a_1! * a_2! * ... * a_k!) * (k! / ((1!)^a_1 * (2!)^a_2 * ... * (k!)^a_k))^n.
The integer partitions of k = 1..10 are listed on pp. 831-832 of Abramowitz and Stegun (1964). We see that, for k = 1..6, the corresponding multinomial coefficients k! / ((1!)^a_1 * (2!)^a_2 * ... * (k!)^a_k) are all distinct; that is, A070289(k) = A000041(k) and A309951(k,s) = A325305(k,s) for s = 0..A000041(k). For 7 <= k <= 10, this is not true anymore; i.e., A070289(k) < A000041(k) for 7 <= k <= 10 (and we conjecture that this is the case for all k >= 7).
From the theory of difference equations, we see that Abramson and Promislow's Eq. (6) on p. 248 (with t=0) implies that Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1. For k = 1..5, these recurrences give R. H. Hardin's empirical recurrences shown in the Formula section below.
We also have Sum_{s = 0..A000041(k)} (-1)^s * A309951(k,s) * T(n-s,k) = 0 for n >= A000041(k) + 1, but for k >= 7, the recurrence we get (for column k) may not necessarily be minimal.
To derive the recurrence for row n, let y=0 in Eq. (8), p. 249, of Abramson and Promislow (1978). We get 1 + Sum_{k >= 1} T(n,k)*x^k/(k!)^n = 1/f_n(-x), where f_n(x) = Sum_{i >= 0} (x^i/(i!)^n). Matching coefficients, we get Sum_{s = 1..k} T(n,s) * (-1)^(s-1) * binomial(k,s)^n = 1, from which the recurrence in the Formula section follows.
(End)

Examples

			Some solutions for n=3 and k=4:
  2 1 3 0    1 3 0 2    3 0 2 1    1 3 0 2    1 3 2 0
  2 0 1 3    1 3 0 2    3 1 2 0    1 0 3 2    1 3 0 2
  2 3 0 1    3 0 2 1    2 3 1 0    2 0 3 1    3 1 0 2
Table starts:
  1  1     1         1             1                  1                       1
  1  3    19       211          3651              90921                 3081513
  1  7   163      8983        966751          179781181             53090086057
  1 15  1135    271375     158408751       191740223841         429966316953825
  1 31  7291   7225951   21855093751    164481310134301     2675558106868421881
  1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
		

Crossrefs

Cf. A000012 (row 1), A000275 (row 2), A212856 (row 3), A212857 (row 4), A212858 (row 5), A212859 (row 6), A212860 (row 7).
Cf. A000012 (column 1), A000225 (column 2), A212850 (column 3), A212851 (column 4), A212852 (column 5), A212853 (column 6), A212854 (column 7).
Cf. A000041, A070289 (order of minimal recurrence for column k), A192721, A212806 (main diagonal), A309951, A325305.

Programs

  • Maple
    A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);
    series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;
    seq(add(abs(k), k=%(j,m)), j=1..len) end:
    for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k=0, 1, -add(
          binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))
        end:
    seq(seq(T(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 26 2020
  • Mathematica
    rows = 9;
    row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];
    T = Table[row[n, rows+1], {n, 1, rows}];
    Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)

Formula

Empirical recurrence for column k:
k=1: a(n) = 1*a(n-1).
k=2: a(n) = 3*a(n-1) - 2*a(n-2).
k=3: a(n) = 10*a(n-1) - 27*a(n-2) + 18*a(n-3).
k=4: a(n) = 47*a(n-1) - 718*a(n-2) + 4416*a(n-3) - 10656*a(n-4) + 6912*a(n-5).
k=5: a(n) = 246*a(n-1) - 20545*a(n-2) + 751800*a(n-3) - 12911500*a(n-4) + 100380000*a(n-5) - 304200000*a(n-6) + 216000000*a(n-7).
[All the "empirical" recurrences above are correct. See the comments above.]
From Benoit Jubin, May 29 2012: (Start)
T(n,1) = T(1,n) = 1.
T(n,2) = 2^n - 1 since the only n X 2 matrix with rows permutations of {0,1} which has a column rise is the one where all rows are [0,1].
(k!)^n*(1 - (k-1)/2^n) <= T(n,k) <= (k!)^n (the first inequality is (11) in the Abramson-Promislow reference, the second is trivial). (End)
For r >= 1, A(n, r) = Sum_{k=0..n} |[x^k] n!^r [z^n] S(r, z)^x| where S(r, z) = Sum_{k>=0} z^k/k!^r. - Peter Luschny, Feb 27 2018
From Petros Hadjicostas, Sep 09 2019: (Start)
Recurrence for column k: Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1.
Recurrence for row n: T(n,k) = (-1)^(k-1) + Sum_{s = 1..k-1} T(n,s) * (-1)^(k-s-1) * binomial(k,s)^n for k >= 1.
(End)
Sum_{k>=1} T(n,k)*z^k/(k!)^n = 1/E_n(-z) -1 where E_n(z) = Sum_{k>=0} z^k/(k!)^n. - Geoffrey Critzer, Apr 28 2023

A061691 Triangle of generalized Stirling numbers.

Original entry on oeis.org

1, 1, 2, 1, 9, 6, 1, 34, 72, 24, 1, 125, 650, 600, 120, 1, 461, 5400, 10500, 5400, 720, 1, 1715, 43757, 161700, 161700, 52920, 5040, 1, 6434, 353192, 2361016, 4116000, 2493120, 564480, 40320, 1, 24309, 2862330, 33731208, 96960024, 97161120, 39372480, 6531840, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2001

Keywords

Comments

The Eulerian-type number triangle associated with this triangle of generalized Stirling numbers is A192721. The table entry T(n,k) gives the number of uniform block permutations of the set {1,2,...,n} partitioned into k blocks. An example is given below. T(n,k) also gives the number of games of simple patience with n cards resulting in k piles (adapt Algorithm 1.1.22 of Lankham). [Peter Bala, Jul 14 2011]

Examples

			Triangle begins:
  1;
  1,2;
  1,9,6;
  1,34,72,24;
  1,125,650,600,120;
  ...
T(4,2) = 34:
There are 7 partitions of the set {1,2,3,4} into 2 blocks. The four partitions {1,2,3}{4}, {1,2,4}{3}, {1,3,4}{2} and {2,3,4}{1} give rise to 4*4 = 16 uniform block permutations while the remaining 3 partitions {1,2}{3,4}, {1,3}{2,4} and {1,4}{2,3} give 2!*3*3 = 18 uniform block permutations : thus in total there are 16+18 = 34 block permutations between the set partitions of {1,2,3,4} into 2 blocks.
		

Crossrefs

Diagonals give A010763, A061690, A000142, A001809, A061689. Cf. A061692. A023998 (row sums), A192721, A192722.

Programs

  • Maple
    #A061691
    #J = sum {n>=0} z^n/n!^2
    J := BesselJ(0, 2*i*sqrt(z)):
    G := exp(x*(J(z)-1)):
    Gser := simplify(series(G, z = 0, 12)):
    for n from 1 to 10 do
    P[n] := n!^2*sort(coeff(Gser, z, n)) od:
    for n from 1 to 10 do seq(coeff(P[n],x,k), k = 1..n) od;
    # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1,
          add(x*b(n-i)*binomial(n, i)/i!, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/i!, i=1..n))(b(n)*n!):
    seq(T(n), n=1..12);  # Alois P. Heinz, Sep 10 2019
  • Mathematica
    max = 9; g := Exp[x*(BesselI[0, 2*Sqrt[z]] - 1)]; gser = Series[g, {z, 0, max}, {x, 0, max}]; t[n_, k_] := n!^2*SeriesCoefficient[ gser // Normal, {z, 0, n}, {x, 0, k}]; Flatten[ Table[ t[n, k], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Apr 04 2012, after Maple *)

Formula

T(n, k) = 1/k!*Sum multinomial(n, n_1, n_2, ..n_k)^2, where the sum extends over all compositions (n_1, n_2, .., n_k) of n into exactly k nonnegative parts. - Vladeta Jovovic, Apr 23 2003
From Peter Bala, Jul 14 2011: (Start)
The table entry T(n,k) may also be expressed as a sum over (unordered) partitions of n into k parts:
T(n,k) = sum {partitions m_1*1+...+m_n*n = n, m_1+...+m_n = k} 1/(m_1!*...*m_n!)*{n!/(1!^(m_1)*...*n!^(m_n))}^2.
Generating function:
Let J(z) = sum {n>=0} z^n/n!^2. Then
exp(x*(J(z)-1)) = 1 + x*z + (x + 2*x^2)*z^2/2!^2 + (x + 9*x^2 + 6*x^3)*z^3/3!^2 + ....
Relations with other sequences:
T(n,k) = 1/k!*A192722(n,k).
Row sums [1,3,16,131,...] = A023998. (End)
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*( sum {k = 0..n-1} binomial(n,k)*binomial(n-1,k)*R(k,x) ) with R(0,x) = 1. Also R(n,x + y) = sum {k = 0..n} binomial(n,k)^2*R(k,x)*R(n-k,y). - Peter Bala, Sep 17 2013

Extensions

More terms from Vladeta Jovovic, Apr 23 2003

A340986 Square array read by descending antidiagonals. T(n,k) is the number of ways to separate the columns of an ordered pair of n-permutations (that have been written as a 2 X n array, one atop the other) into k cells so that no cell has a column rise. For n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 19, 0, 1, 4, 21, 92, 211, 0, 1, 5, 36, 255, 1354, 3651, 0, 1, 6, 55, 544, 4725, 29252, 90921, 0, 1, 7, 78, 995, 12196, 123903, 873964, 3081513, 0, 1, 8, 105, 1644, 26215, 377904, 4368729, 34555880, 136407699, 0
Offset: 0

Views

Author

Geoffrey Critzer, Feb 01 2021

Keywords

Comments

A column rise (cf. A000275) means a pair of adjacent columns within a cell where each entry in the first column is less than the adjacent entry in the second column. The order of the columns cannot change. The cells are allowed to be empty.

Examples

			Square array T(n,k) begins:
  1,    1,     1,      1,      1,      1, ...
  0,    1,     2,      3,      4,      5, ...
  0,    3,    10,     21,     36,     55, ...
  0,   19,    92,    255,    544,    995, ...
  0,  211,  1354,   4725,  12196,  26215, ...
  0, 3651, 29252, 123903, 377904, 939155, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Section 3.13.

Crossrefs

Columns k=0-4 give: A000007, A000275, A336271, A336638, A336639.
Rows n=0-2 give: A000012, A001477, A014105.
Main diagonal gives A336665.

Programs

  • Maple
    T:= (n, k)-> n!^2*coeff(series(1/BesselJ(0, 2*sqrt(x))^k, x, n+1), x, n):
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Feb 02 2021
  • Mathematica
    nn = 6; B[n_] := n!^2; e[x_] := Sum[x^n/B[n], {n, 0, nn}];
    Table[Table[B[n], {n, 0, nn}] PadRight[CoefficientList[Series[e[-x]^-k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Grid

Formula

Let E(x) = Sum_{n>=0} x^n/n!^2. Then Sum_{n>=0} T(n,k)*x^n/n!^2 = 1/E(-x)^k.
T(n,k) = (n!)^2 * [x^n] 1/BesselJ(0,2*sqrt(x))^k. - Alois P. Heinz, Feb 02 2021
For fixed k>=1, T(n,k) ~ n!^2 * n^(k-1) / ((k-1)! * r^(n + k/2) * BesselJ(1, 2*sqrt(r))^k), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 11 2025

A192722 T(n,k) = Sum of multinomial(n; n_1,n_2,...,n_k)^2, where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts.

Original entry on oeis.org

1, 1, 4, 1, 18, 36, 1, 68, 432, 576, 1, 250, 3900, 14400, 14400, 1, 922, 32400, 252000, 648000, 518400, 1, 3430, 262542, 3880800, 19404000, 38102400, 25401600, 1, 12868, 2119152, 56664384, 493920000, 1795046400, 2844979200, 1625702400
Offset: 1

Views

Author

Peter Bala, Jul 11 2011

Keywords

Comments

Compare with triangle A019538, whose entries are given by
... Sum multinomial(n; n_1,n_2,...,n_k), where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts.
For related tables see A061691 and A192721.
Let P be the poset of all ordered pairs (S,T) of subsets of [n] with |S|=|T|, ordered componentwise by inclusion. T(n,k) is the number of length k chains in P from ({},{}) to ([n],[n]). - Geoffrey Critzer, Apr 15 2020

Examples

			The triangle begins
n/k|..1.....2.......3........4........5........6
================================================
.1.|..1
.2.|..1.....4
.3.|..1....18.....36
.4.|..1....68.....432......576
.5.|..1...250....3900....14400....14400
.6.|..1...922...32400...252000...648000...518400
...
T(4,2) = 68:
There are 3 compositions of 4 into 2 parts, namely, 4 = 2 + 2 = 1 + 3 = 3 + 1; hence
T(4,2) = (4!/(2!*2!))^2 + (4!/(1!*3!))^2 + (4!/(3!*1!))^2
= 36 + 16 + 16 = 68.
Matrix identity: A192721 * Pascal's triangle = row reverse of A192722:
/...1................\ /..1..............\
|...3.....1...........||..1....1..........|
|..19....16.....5.....||..1....2....1.....|
|.211...299....65....1||..1....3....3....1|
|.....................||..................|
=
/...1...................\
|...4......1.............|
|..36.....18......1......|
|.576....432.....68.....1|
|........................|
		

Crossrefs

Cf. A001044, A002190, A061691, A192721, A102221 (row sums), A000275 (alternating row sums).

Programs

  • Maple
    J := unapply(BesselJ(0, 2*sqrt(-1)*sqrt(z)), z):
    G := 1/(1-x*(J(z)-1)):
    Gser := simplify(series(G, z = 0, 15)):
    for n from 1 to 14 do
    P[n] := n!^2*sort(coeff(Gser, z, n)) od:
    for n from 1 to 14 do seq(coeff(P[n], x, k), k = 1..n) od;
    # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(
          `if`(n=0, 1, add(x*b(n-i)/i!^2, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)*n!^2):
    seq(T(n), n=1..14);  # Alois P. Heinz, Sep 10 2019
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x b[n-i]/i!^2, {i, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n] n!^2];
    Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)

Formula

Generating function: Let J(z) = Sum_{n>=0} z^n/n!^2. Then
1 + Sum_{n>=1} (Sum_{k = 1..n} T(n,k)*x^k)*z^n/n!^2 = 1/(1 - x*(J(z) - 1))
= 1 + x*z + (x + 4*x^2)*z^2/2!^2 + (x + 18*x^2 + 36*x^3)*z^3/3!^2 + ....
Relations with other sequences:
The change of variable z -> z/x followed by x -> 1/(x - 1) transforms the above bivariate generating function 1/(1 - x*(J(z) - 1)) into (1 - x)/(-x + J(z*(x-1))), which is the generating function for A192721.
1/k!*T(n,k) = A061691(n,k).
T(n,n) = n!^2 = A001044(n).
Row sums = A102221.
For n>=1, Sum_{k = 1..n} (-1)^(n+k)*T(n,k)/k = A002190(n).

A287315 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 16, 19, 0, 1, 65, 299, 211, 0, 1, 246, 3156, 7346, 3651, 0, 1, 917, 28722, 160322, 237517, 90921, 0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513, 0, 1, 12861, 2041965, 46261609, 288196659, 632274183, 520507423, 136407699
Offset: 0

Views

Author

Peter Luschny, May 29 2017

Keywords

Examples

			Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1,    3]
3: [0, 1,   16,     19]
4: [0, 1,   65,    299,     211]
5: [0, 1,  246,   3156,    7346,    3651]
6: [0, 1,  917,  28722,  160322,  237517,   90921]
7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513]
...
Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
		

Crossrefs

T(n,n) = A000275(n).
Cf. A192721 (variant), A001044, A287314, A287316.

Programs

  • Maple
    Delta := proc(a, n) local del, A, u;
    A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1));
    for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end:
    A287315_row := n -> Delta(A287314_poly(n), n):
    for n from 0 to 7 do A287315_row(n) od;
    A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
    for n from 0 to 4 do A287315_eulerian(n,x) od;

Formula

Sum_{k=0..n} T(n,k) = A001044(n).

A334257 Triangle read by rows: T(n,k) is the number of ordered pairs of n-permutations with exactly k common double descents, n>=0, 0<=k<=max{0,n-2}.

Original entry on oeis.org

1, 1, 4, 35, 1, 545, 30, 1, 13250, 1101, 48, 1, 463899, 51474, 2956, 70, 1, 22106253, 3070434, 217271, 7545, 96, 1, 1375915620, 229528818, 19372881, 864632, 20322, 126, 1, 108386009099, 21107789247, 2070917370, 113587335, 3530099, 61089, 160, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 26 2020

Keywords

Comments

An ordered pair of n-permutations ((a_1,a_2,...,a_n),(b_1,b_2,...,b_n)) has a common double descent at position i, 1<=i<=n-2, if a_i > a_i+1 > a_i+2 and b_i > b_i+1 > b_i+2.

Examples

			T(4,1) = 30:  There are 9 such ordered pairs formed from the permutations 3421,2431,1432.  There are 9 such ordered pairs formed from the permutations 4312,4213,3214.  Then pairing each of these 6 permutations with 4321 gives 12 more ordered pairs with exactly 1 common double descent.  9+9+12 = 30.
Triangle T(n,k) begins:
       1;
       1;
       4;
      35,     1;
     545,    30,    1;
   13250,  1101,   48,  1;
  463899, 51474, 2956, 70, 1;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.

Crossrefs

Column k=0 gives A334412.

Programs

  • Maple
    b:= proc(n, u, v, t) option remember; expand(`if`(n=0, 1,
          add(add(b(n-1, u-j, v-i, x)*t, i=1..v)+
              add(b(n-1, u-j, v+i-1, 1), i=1..n-v), j=1..u)+
          add(add(b(n-1, u+j-1, v-i, 1), i=1..v)+
              add(b(n-1, u+j-1, v+i-1, 1), i=1..n-v), j=1..n-u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2, 1)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Apr 26 2020
  • Mathematica
    nn = 8; a = Apply[Plus,Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> y - 1; Map[Select[#, # > 0 &] &,
      Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Grid

A334394 Triangle read by rows: T(n,k) is the number of ordered triples of n-permutations with exactly k common descents, n>=0, 0<=k<=max(0,n-1).

Original entry on oeis.org

1, 1, 7, 1, 163, 52, 1, 8983, 4499, 341, 1, 966751, 660746, 98256, 2246, 1, 179781181, 155729277, 35677082, 2045282, 15177, 1, 53090086057, 55690144728, 17446464519, 1754605504, 42658239, 104952, 1, 23402291822743, 28825420903351, 11518335730323, 1717307782339, 84058424389, 905365701, 739153, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 26 2020

Keywords

Comments

An ordered triple of n-permutations ( (a_1,a_2,...,a_n),(b_1,b_2,...,b_n),(c_1,c_2,...,c_n) ) has a common descent at position i, 1<=i<=n-1, if a_i > a_i+1, b_i > b_i+1 and c_i > c_i+1.

Examples

			Triangle begins:
       1;
       1;
       7,      1;
     163,     52,     1;
    8983,   4499,   341,   1;
  966751, 660746, 98256, 2246, 1;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.

Crossrefs

Cf. A192721, A008292, A212856 (column k=0), A000442 (row sums).

Programs

  • Maple
    T:= (n, k)-> n!^3*coeff(series(coeff(series((y-1)/(y-add((x*
        (y-1))^j/j!^3, j=0..n)), y, k+1), y, k), x, n+1), x, n):
    seq(seq(T(n,k), k=0..max(0, n-1)), n=0..10);  # Alois P. Heinz, Apr 28 2020
  • Mathematica
    nn = 6; e3[x_] := Sum[x^n/n!^3, {n, 0, nn}];Drop[Map[Select[#, # > 0 &] &,
       Table[n!^3, {n, 0, nn}] CoefficientList[Series[(y - 1)/(y - e3[x (y - 1)]), {x, 0, nn}], {x, y}]], 1] // Grid

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*y^k*x^n/n!^3 = (y-1)/(y-f(x*(y-1))) where f(z) = Sum_{n>=0} z^n/n!^3.

A362589 Triangular array read by rows. T(n,k) is the number of ways to form an ordered pair of n-permutations and then choose a size k subset of its common descent set, n >= 0, 0 <= k <= max{0,n-1}.

Original entry on oeis.org

1, 1, 4, 1, 36, 18, 1, 576, 432, 68, 1, 14400, 14400, 3900, 250, 1, 518400, 648000, 252000, 32400, 922, 1, 25401600, 38102400, 19404000, 3880800, 262542, 3430, 1, 1625702400, 2844979200, 1795046400, 493920000, 56664384, 2119152, 12868, 1
Offset: 0

Views

Author

Geoffrey Critzer, May 01 2023

Keywords

Examples

			Triangle begins:
     1;
     1;
     4,     1;
    36,    18,    1;
   576,   432,   68,   1;
 14400, 14400, 3900, 250, 1;
 ...
		

Crossrefs

Cf. A001044 (column k=0), A102221 (row sums), A192721.

Programs

  • Mathematica
    nn = 8; B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[u/(u + 1 - e[u z]), {z, 0, nn}], {z, u}]] // Flatten

Formula

Sum_{n>=0} Sum_{k=0..n-1} T(n,k)*u^k*z^n/(n!)^2 = u/(u + 1 - E(u*z)) where E(z) = Sum_{n>=0} z^n/(n!)^2.
Column k=1: Sum_{k=1..n-1} A192721(n,k)*k gives total number of common descents over all permutation pairs.
Showing 1-10 of 10 results.