A102221
Column 0 of triangular matrix A102220, which equals [2*I - A008459]^(-1).
Original entry on oeis.org
1, 1, 5, 55, 1077, 32951, 1451723, 87054773, 6818444405, 675900963271, 82717196780955, 12248810651651333, 2158585005685222491, 446445657799551807541, 107087164031952038620481, 29487141797206760561836055, 9238158011747884080353808245
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-i)*binomial(n, i)/i!, i=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..20); # Alois P. Heinz, May 11 2016
-
Rest[CoefficientList[Series[1/(2-BesselJ[0, 2*I*Sqrt[x]]), {x, 0, 20}], x] * Range[0, 20]!^2] (* Vaclav Kotesovec, Mar 02 2014 *)
m = 20; CoefficientList[1/(2 - BesselI[0, 2 Sqrt[x]]) + O[x]^m, x] Range[0, m - 1]!^2 (* Jean-François Alcover, Jun 11 2019, after Vladeta Jovovic *)
b[n_] := b[n] = If[n==0, 1, Sum[b[n-i] Binomial[n, i]/i!, {i, 1, n}]];
a[n_] := b[n] n!;
a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2020, after Alois P. Heinz *)
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(n,k)^2*a(k)))
-
L = taylor(1/(1-x*hypergeometric((1,),(2,2),x)),x,0,14).list()
[factorial(i)^2*c for (i,c) in enumerate(L)] # Peter Luschny, Jul 28 2015
A192721
The number of pairs of permutations in the product group S_n X S_n with k common descents, n >= 1 and 0 <= k <= n-1.
Original entry on oeis.org
1, 3, 1, 19, 16, 1, 211, 299, 65, 1, 3651, 7346, 3156, 246, 1, 90921, 237517, 160322, 28722, 917, 1, 3081513, 9903776, 9302567, 2864912, 245407, 3424, 1, 136407699, 520507423, 632274183, 288196659, 46261609, 2041965, 12861, 1
Offset: 1
The triangle begins
n/k|.....0.......1.......2......3....4.....5
============================================
..1|.....1
..2|.....3.......1
..3|....19......16.......1
..4|...211.....299......65......1
..5|..3651....7346....3156....246....1
..6|.90921..237517..160322..28722..917.....1
..
Row 3 entries T(3,0) = 19, T(3,1) = 16 and T(3,2) = 1 can be read from the following table:
============================================
Number of common descents in S_3 x S_3
============================================
.
...|.123...132...213...231...312...321
======================================
123|..0.....0.....0.....0.....0.....0
132|..0.....1.....0.....1.....0.....1
213|..0.....0.....1.....0.....1.....1
231|..0.....1.....0.....1.....0.....1
312|..0.....0.....1.....0.....1.....1
321|..0.....1.....1.....1.....1.....2
Matrix identity A192721 * A007318 = row reverse of A192722:
/...1................\ /..1..............\
|...3.....1...........||..1....1..........|
|..19....16.....1.....||..1....2....1.....|
|.211...299....65....1||..1....3....3....1|
|.....................||..................|
=
/...1...................\
|...4......1.............|
|..36.....18......1......|
|.576....432.....68.....1|
|........................|
- Alois P. Heinz, Rows n = 1..45, flattened
- L. Carlitz, R. Scoville and T. Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc., 80 (1974), 881-884.
- L. Carlitz, R. Scoville, T. Vaughan, Enumeration of pairs of permutations, Discrete Math. 14, (1976) 215-239.
- J-Marc Fedou and D. Rawlings, More statistics on permutation pairs, The Electronic Journal of Combinatorics, 1 (1994) #R11.
- M. V. Koutras, Eulerian numbers associated with sequences of polynomials, Fibonacci Quart. 32 (1994) 44-57.
- T. Mendes, J. Remmel, A. Riehl, A Generalization of the Generating Functions for Descent Statistic.
- R. P. Stanley, Binomial posets, Möbius inversion and permutation enumeration, J. Combinat. Theory, A 20 (1976), 336-356.
-
#A192721
#J = sum {n>=0} z^n/n!^2
J := unapply(BesselJ(0, 2*I*sqrt(z)),z):
G := (1-x)/(-x + J(z*(x-1))):
Gser := simplify(series(G, z = 0, 12)):
for n from 1 to 10 do
P[n] := n!^2*sort(coeff(Gser, z, n)) od:
for n from 1 to 10 do seq(coeff(P[n],x,k), k = 0..n-1) od;
# gives sequence in triangular form
-
max = 9; j[z_] := BesselJ[0, 2 I*Sqrt[z]]; g = (1 - x)/(-x + j[z*(x - 1)]); gser = Series[g, {z, 0, max}]; p[n_] := n!^2 Coefficient[ gser, z, n]; a[n_, k_] := Coefficient[ p[n], x, k]; Flatten[ Table[ a[n, k], {n, 1, max-1}, {k, 0, n-1}]] (* Jean-François Alcover, Dec 13 2011, after Maple *)
A061691
Triangle of generalized Stirling numbers.
Original entry on oeis.org
1, 1, 2, 1, 9, 6, 1, 34, 72, 24, 1, 125, 650, 600, 120, 1, 461, 5400, 10500, 5400, 720, 1, 1715, 43757, 161700, 161700, 52920, 5040, 1, 6434, 353192, 2361016, 4116000, 2493120, 564480, 40320, 1, 24309, 2862330, 33731208, 96960024, 97161120, 39372480, 6531840, 362880
Offset: 1
Triangle begins:
1;
1,2;
1,9,6;
1,34,72,24;
1,125,650,600,120;
...
T(4,2) = 34:
There are 7 partitions of the set {1,2,3,4} into 2 blocks. The four partitions {1,2,3}{4}, {1,2,4}{3}, {1,3,4}{2} and {2,3,4}{1} give rise to 4*4 = 16 uniform block permutations while the remaining 3 partitions {1,2}{3,4}, {1,3}{2,4} and {1,4}{2,3} give 2!*3*3 = 18 uniform block permutations : thus in total there are 16+18 = 34 block permutations between the set partitions of {1,2,3,4} into 2 blocks.
- Alois P. Heinz, Rows n = 1..141, flattened
- M. Aguiar and R. C. Orellana, The Hopf algebra of uniform block permutations, 17th International Conference on Formal Power Series and Algebraic Combinatorics, Taormina, July 2005.
- D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36 (1999), 413-432.
- D. G. Fitzgerald, A presentation for the monoid of uniform block permutations, Bull. Austral. Math. Soc. 68 (2003), 317-324.
- A. T. Irish, F. Quitin, U. Madhow, and M. Rodwell, Achieving multiple degrees of freedom in long-range mm-wave MIMO channels using randomly distributed relays, 2014.
- I. P. Lankham, Patience Sorting and Its Generalizations, arXiv:0705.4524 [math.CO], 2007.
- J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
-
#A061691
#J = sum {n>=0} z^n/n!^2
J := BesselJ(0, 2*i*sqrt(z)):
G := exp(x*(J(z)-1)):
Gser := simplify(series(G, z = 0, 12)):
for n from 1 to 10 do
P[n] := n!^2*sort(coeff(Gser, z, n)) od:
for n from 1 to 10 do seq(coeff(P[n],x,k), k = 1..n) od;
# yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1,
add(x*b(n-i)*binomial(n, i)/i!, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i)/i!, i=1..n))(b(n)*n!):
seq(T(n), n=1..12); # Alois P. Heinz, Sep 10 2019
-
max = 9; g := Exp[x*(BesselI[0, 2*Sqrt[z]] - 1)]; gser = Series[g, {z, 0, max}, {x, 0, max}]; t[n_, k_] := n!^2*SeriesCoefficient[ gser // Normal, {z, 0, n}, {x, 0, k}]; Flatten[ Table[ t[n, k], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Apr 04 2012, after Maple *)
Showing 1-3 of 3 results.
Comments