cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A287316 Square array A(n,k) = (n!)^2 [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 20, 1, 0, 1, 5, 28, 93, 70, 1, 0, 1, 6, 45, 256, 639, 252, 1, 0, 1, 7, 66, 545, 2716, 4653, 924, 1, 0, 1, 8, 91, 996, 7885, 31504, 35169, 3432, 1, 0, 1, 9, 120, 1645, 18306, 127905, 387136, 272835, 12870, 1, 0
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Comments

A287314 provide polynomials and A287315 rational functions generating the columns of the array.

Examples

			Arrays start:
k\n| 0  1    2      3         4        5          6           7
---|----------------------------------------------------------------
k=0| 1, 0,   0,      0,       0,       0,         0,          0, ... A000007
k=1| 1, 1,   1,      1,       1,       1,         1,          1, ... A000012
k=2| 1, 2,   6,     20,      70,     252,       924,       3432, ... A000984
k=3| 1, 3,  15,     93,     639,    4653,     35169,     272835, ... A002893
k=4| 1, 4,  28,    256,    2716,   31504,    387136,    4951552, ... A002895
k=5| 1, 5,  45,    545,    7885,  127905,   2241225,   41467725, ... A169714
k=6| 1, 6,  66,    996,   18306,  384156,   8848236,  218040696, ... A169715
k=7| 1, 7,  91,   1645,   36715,  948157,  27210169,  844691407, ...
k=8| 1, 8, 120,   2528,   66424, 2039808,  70283424, 2643158400, ... A385286
k=9| 1, 9, 153,   3681,  111321, 3965409, 159700401, 7071121017, ...
       A000384,A169711, A169712, A169713,                            A033935
		

Crossrefs

Rows: A000007 (k=0), A000012 (k=1), A000984 (k=2), A002893 (k=3), A002895 (k=4), A169714 (k=5), A169715 (k=6), A385286 (k=8).
Columns: A001477(n=1), A000384 (n=2), A169711 (n=3), A169712 (n=4), A169713 (n=5).
Cf. A033935 (diagonal), A287314, A287315, A287318.

Programs

  • Maple
    A287316_row := proc(k, len) local b, ser;
    b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
    seq((i!)^2*coeff(ser,x,i), i=0..len-1) end:
    for k from 0 to 6 do A287316_row(k, 9) od;
    A287316_col := proc(n, len) local k, x;
    sum(z^k/k!^2, k = 0..infinity); series(%^x, z=0, n+1):
    unapply(n!^2*coeff(%, z, n), x); seq(%(j), j=0..len) end:
    for n from 0 to 7 do A287316_col(n, 9) od;
  • Mathematica
    Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (n!)^2, {n, 0, 6}], {k, 0,9}]
  • PARI
    A287316_row(K, N) = {
      my(x='x + O('x^(2*N-1)));
      Vec(serlaplace(serlaplace(substpol(besseli(0,2*x)^K, 'x^2, 'x))));
    };
    N=8; concat([vector(N, n, n==1)], vector(9, k, A287316_row(k, N))) \\ Gheorghe Coserea, Jan 12 2018
    
  • PARI
    {A(n, k) = if(n<0 || k<0, 0, n!^2 * polcoeff(besseli(0, 2*x + x*O(x^(2*n)))^k, 2*n))}; /* Michael Somos, Dec 30 2021 */
    
  • PARI
    A(k, n) = my(x='x+O('x^(n+1))); n!^2*polcoeff(hypergeom([], [1], x)^k, n); \\ Peter Luschny, Jun 24 2025
    
  • Python
    from math import comb
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A(n,k):
        if k <= 0: return 0**n
        return sum(A(i,k-1)*comb(n,i)**2 for i in range(n+1))
    for k in range(10): print([A(n, k) for n in range(8)])
    # Jeremy Tan, Dec 10 2021

Formula

A(n,k) = A287318(n,k) / binomial(2*n,n).
If a+b=k then A(n,k) = Sum_{i=0..n} A(i,a)*A(n-i,b)*binomial(n,i)^2 (Richmond and Shallit). In particular A(n,k) = Sum_{i=0..n} A(i,k-1)*binomial(n,i)^2. - Jeremy Tan, Dec 10 2021

A287697 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287698.

Original entry on oeis.org

1, 0, 1, 0, 1, 7, 0, 1, 52, 163, 0, 1, 341, 4499, 8983, 0, 1, 2246, 98256, 660746, 966751, 0, 1, 15177, 2045282, 35677082, 155729277, 179781181, 0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057
Offset: 0

Views

Author

Peter Luschny, May 30 2017

Keywords

Examples

			Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1,      7]
3: [0, 1,     52,      163]
4: [0, 1,    341,     4499,       8983]
5: [0, 1,   2246,    98256,     660746,      966751]
6: [0, 1,  15177,  2045282,   35677082,   155729277,   179781181]
7: [0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057]
...
Let q4(x) = (x + 341*x^2 + 4499*x^3 + 8983*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 are column 4 of A287698.
		

Crossrefs

Programs

  • Maple
    A287697_row := n -> Delta(A287696_poly(n), n): # Delta defined in A287315.
    for n from 0 to 9 do A287697_row(n) od;
    A287697_eulerian := (n,x) -> add(A287697_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
    for n from 0 to 4 do A287697_eulerian(n,x) od;

Formula

T(n,n) = A212856(n).
Sum_{k=0..n} T(n,k) = A000442(n).
Showing 1-2 of 2 results.