A287314
Triangle read by rows, the coefficients of the polynomials generating the columns of A287316.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 4, -9, 6, 0, -33, 82, -72, 24, 0, 456, -1225, 1250, -600, 120, 0, -9460, 27041, -30600, 17700, -5400, 720, 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040, 0, -10643745, 33391954, -43471624, 31149496, -13524000, 3622080, -564480, 40320
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, -1, 2
[3] 0, 4, -9, 6
[4] 0, -33, 82, -72, 24
[5] 0, 456, -1225, 1250, -600, 120
[6] 0, -9460, 27041, -30600, 17700, -5400, 720
[7] 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040
...
For example let p4(x) = -33*x + 82*x^2 - 72*x^3 + 24*x^4 then p4(n) = A169712(n).
-
A287314_row := proc(n) local k; sum(z^k/k!^2, k = 0..infinity);
series(%^x, z=0, n+1): n!^2*coeff(%,z,n); seq(coeff(%,x,k), k=0..n) end:
for n from 0 to 8 do print(A287314_row(n)) od;
A287314_poly := proc(n) local k, x; sum(z^k/k!^2, k = 0..infinity);
series(%^x, z=0, n+1): unapply(n!^2*coeff(%, z, n), x) end:
for n from 0 to 7 do A287314_poly(n) od;
-
nn = 10; e[x_] := Sum[x^n/n!^2, {n, 0, nn}];
f[list_] := CoefficientList[InterpolatingPolynomial[Table[{i, list[[i]]}, {i, 1, nn}], m], m];Drop[Map[f,Transpose[Table[Table[n!^2, {n, 0, nn}] CoefficientList[
Series[e[x]^k, {x, 0, nn}], x], {k, 1, nn}]]], -1] // Grid (* Geoffrey Critzer, Jan 22 2021 *)
A287315
Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 16, 19, 0, 1, 65, 299, 211, 0, 1, 246, 3156, 7346, 3651, 0, 1, 917, 28722, 160322, 237517, 90921, 0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513, 0, 1, 12861, 2041965, 46261609, 288196659, 632274183, 520507423, 136407699
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1, 3]
3: [0, 1, 16, 19]
4: [0, 1, 65, 299, 211]
5: [0, 1, 246, 3156, 7346, 3651]
6: [0, 1, 917, 28722, 160322, 237517, 90921]
7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513]
...
Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
-
Delta := proc(a, n) local del, A, u;
A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1));
for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end:
A287315_row := n -> Delta(A287314_poly(n), n):
for n from 0 to 7 do A287315_row(n) od;
A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
for n from 0 to 4 do A287315_eulerian(n,x) od;
A033935
Sum of squares of coefficients in full expansion of (z1+z2+...+zn)^n.
Original entry on oeis.org
1, 1, 6, 93, 2716, 127905, 8848236, 844691407, 106391894904, 17091486402849, 3410496772665940, 827540233598615691, 239946160014513220896, 81932406267721802925925, 32541656017173091541743368, 14874686717916861528415671285, 7753005946480818323895940923376
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2014
A033935:= proc(n) series(hypergeom([],[1],z)^n, z=0, n+1): n!^2*coeff(%,z,n) end: seq(A033935(n), n=0..16); # Peter Luschny, May 31 2017
-
Table[nn=n;n!^2 Coefficient[Series[(Sum[x^k/k!^2,{k,0,nn}])^n,{x,0,nn}],x^n],{n,1,20}] (* Geoffrey Critzer, Apr 19 2014 *)
Flatten[{1,Table[n!^2*Coefficient[Series[BesselI[0,2*Sqrt[x]]^n,{x,0,n}],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Jul 29 2014 *)
Table[SeriesCoefficient[HypergeometricPFQ[{},{1},x]^n, {x,0,n}] n!^2, {n,0,16}] (* Peter Luschny, May 31 2017 *)
A287318
Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0
Offset: 0
Arrays start:
k\n| 0 1 2 3 4 5 6
---|---------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984
k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894
k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896
k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699
k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317
k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ... A356258
k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ...
k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ...
k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
-
A287318_row := proc(k, len) local b, ser;
b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
seq((2*i)!*coeff(ser,x,i), i=0..len-1) end:
for k from 0 to 6 do A287318_row(k, 9) od;
-
Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]
A287698
Square array A(n,k) = (n!)^3 [x^n] hypergeom([], [1, 1], z)^k read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 10, 1, 0, 1, 4, 27, 56, 1, 0, 1, 5, 52, 381, 346, 1, 0, 1, 6, 85, 1192, 6219, 2252, 1, 0, 1, 7, 126, 2705, 36628, 111753, 15184, 1, 0, 1, 8, 175, 5136, 124405, 1297504, 2151549, 104960, 1, 0
Offset: 0
Array starts:
k\n| 0 1 2 3 4 5 6 7
---|-------------------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
k=2| 1, 2, 10, 56, 346, 2252, 15184, 104960, ... A000172
k=3| 1, 3, 27, 381, 6219, 111753, 2151549, 43497891, ... A141057
k=4| 1, 4, 52, 1192, 36628, 1297504, 50419096, 2099649808, ... A287699
k=5| 1, 5, 85, 2705, 124405, 7120505, 464011825, 33031599725, ...
k=6| 1, 6, 126, 5136, 316206, 25461756, 2443835736, 263581282656, ...
A001107,A287702,A287700, A287701, A055733
-
A287698_row := (k, len) -> seq(A287696_poly(j)(k), j=0..len):
A287698_row := proc(k, len) hypergeom([], [1, 1], x):
series(%^k, x, len); seq((i!)^3*coeff(%, x, i), i=0..len-1) end:
for k from 0 to 6 do A287698_row(k, 9) od;
A287698_col := proc(n, len) local k, x; hypergeom([], [1, 1], z);
series(%^x, z=0, n+1): unapply(n!^3*coeff(%, z, n), x); seq(%(j), j=0..len) end:
for n from 0 to 7 do A287698_col(n, 9) od;
-
Table[Table[SeriesCoefficient[HypergeometricPFQ[{},{1,1},x]^k, {x, 0, n}] (n!)^3, {n, 0, 6}], {k, 0, 9}] (* as a table of rows *)
A361397
Number A(n,k) of k-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 20, 4, 0, 1, 8, 54, 176, 10, 0, 1, 10, 104, 996, 1876, 28, 0, 1, 12, 170, 2944, 22734, 22064, 84, 0, 1, 14, 252, 6500, 108136, 577692, 275568, 264, 0, 1, 16, 350, 12144, 332050, 4525888, 15680628, 3584064, 858, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 2, 20, 54, 104, 170, 252, ...
0, 4, 176, 996, 2944, 6500, 12144, ...
0, 10, 1876, 22734, 108136, 332050, 796860, ...
0, 28, 22064, 577692, 4525888, 19784060, 62039088, ...
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
g:= proc(n, k) option remember; `if` (n<1, -1,
-add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n))
end:
A:= (n,k)-> `if`(n=0, 1, `if`(k=0, 0, g(n, k))):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, 0] = 0; b[n_, 1] = 1; b[0, k_] = 1;
b[n_, k_] := b[n, k] = Sum[Binomial[n, i]^2*b[i, k - 1], {i, 0, n}]; (* A287316 *)
g[n_, k_] := g[n, k] = b[n, k]*Binomial[2 n, n]; (* A287318 *)
a[n_, k_] := a[n, k] = g[n, k] - Sum[a[i, k]*g[n - i, k], {i, 1, n - 1}];
TableForm[Table[a[n, k], {k, 0, 10}, {n, 0, 10}]] (* Shel Kaphan, Mar 14 2023 *)
A287317
Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.
Original entry on oeis.org
1, 10, 270, 10900, 551950, 32232060, 2070891900, 142317232200, 10277494548750, 770878551371500, 59577647564312020, 4717432065143561400, 381091087190569291900, 31308955091335405435000, 2609450031306515140215000, 220199552765301571338488400
Offset: 0
-
A287317_list := proc(len) series(BesselI(0, 2*sqrt(x))^5, x, len);
seq((2*i)!*coeff(%, x, i), i=0..len-1) end: A287317_list(16);
-
Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^5, {x, 0, n}] (2 n) !, {n, 0, 15}]
Table[Binomial[2n,n]^2 Sum[(Binomial[n,j]^4/Binomial[2n,2j]) HypergeometricPFQ[{-j,-j,-j}, {1,1/2-j}, 1/4], {j,0,n}], {n,0,15}]
Table[Sum[(2 n)!/(i! j! k! l! (n-i-j-k-l)!)^2, {i,0,n}, {j,0,n-i}, {k,0,n-i-j}, {l,0,n-i-j-k}], {n,0,30}] (* Shel Kaphan, Jan 24 2023 *)
Moved original definition to formula section and reworded definition descriptively similar to sequence
A039699, by
Dave R.M. Langers, Oct 12 2022
A169712
The function W_n(8) (see Borwein et al. reference for definition).
Original entry on oeis.org
1, 70, 639, 2716, 7885, 18306, 36715, 66424, 111321, 175870, 265111, 384660, 540709, 740026, 989955, 1298416, 1673905, 2125494, 2662831, 3296140, 4036221, 4894450, 5882779, 7013736, 8300425, 9756526, 11396295, 13234564, 15286741, 17568810, 20097331, 22889440
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub, and James Wan, Some Arithmetic Properties of Short Random Walk Integrals, May 2011.
- Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[-33*n+82*n^2-72*n^3+24*n^4: n in [1..40]]; // Vincenzo Librandi May 28 2017
-
A169712 := proc(n)
W(n,8) ;
end proc:
seq(A169712(n),n=1..40) ; # uses W defined in A169715; R. J. Mathar, Mar 28 2012
a := n -> -33*n + 82*n^2 - 72*n^3 + 24*n^4:
seq(a(n), n=1..28); # Peter Luschny, May 27 2017
-
Table[-33 n + 82 n^2 - 72 n^3 + 24 n^4, {n, 1, 40}] (* or *) CoefficientList[Series[(1 + 65 x + 299 x^2 + 211 x^3) /(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2017 *)
-
a(n)=-33*n+82*n^2-72*n^3+24*n^4 \\ Charles R Greathouse IV, Oct 21 2022
A169711
The function W_n(6) (see Borwein et al. reference for definition).
Original entry on oeis.org
1, 20, 93, 256, 545, 996, 1645, 2528, 3681, 5140, 6941, 9120, 11713, 14756, 18285, 22336, 26945, 32148, 37981, 44480, 51681, 59620, 68333, 77856, 88225, 99476, 111645, 124768, 138881, 154020, 170221, 187520, 205953, 225556, 246365, 268416, 291745, 316388
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub, and James Wan, Some Arithmetic Properties of Short Random Walk Integrals, May 2011.
- Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[6*n^3-9*n^2+4*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
-
A169711 := proc(n)
W(n,6) ;
end proc:
seq(A169711(n),n=1..20) ; # uses W from A169715; R. J. Mathar, Mar 28 2012
a := n -> 6*n^3 - 9*n^2 + 4*n: seq(a(n), n=1..33); # Peter Luschny, May 27 2017
-
CoefficientList[Series[(1 + 16 x + 19 x^2) / (1 - x)^4, {x, 0, 50}], x] (* or *) Table[6 n^3 - 9 n^2 + 4 n, {n, 1, 40}] (* Vincenzo Librandi, May 28 2017 *)
LinearRecurrence[{4,-6,4,-1},{1,20,93,256},40] (* Harvey P. Dale, Feb 27 2023 *)
-
a(n)=6*n^3-9*n^2+4*n \\ Charles R Greathouse IV, Oct 18 2022
A169713
The function W_n(10) (see Borwein et al. reference for definition).
Original entry on oeis.org
1, 252, 4653, 31504, 127905, 384156, 948157, 2039808, 3965409, 7132060, 12062061, 19407312, 29963713, 44685564, 64699965, 91321216, 126065217, 170663868, 227079469, 297519120, 384449121, 490609372, 619027773, 773034624, 956277025, 1172733276
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Some Arithmetic Properties of Short Random Walk Integrals, May 2011.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[120*n^5-600*n^4+1250*n^3-1225*n^2+456*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
-
A169713 := proc(n)
W(n,10) ;
end proc:
seq(A169713(n),n=1..20) ; # uses W() from A169715; R. J. Mathar, Mar 27 2012
a := n -> 120*n^5 - 600*n^4 + 1250*n^3 - 1225*n^2 + 456*n:
seq(a(n), n=1..20); # Peter Luschny, May 27 2017
-
Table[120 n^5 - 600 n^4 + 1250 n^3 - 1225 n^2 + 456 n, {n, 1, 40}] (* or *) CoefficientList[Series[(1 + 246 x + 3156 x^2 + 7346 x^3 + 3651 x^4) / (1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2017 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{1,252,4653,31504,127905,384156},30] (* Harvey P. Dale, Aug 09 2023 *)
-
a(n)=120*n^5-600*n^4+1250*n^3-1225*n^2+456*n \\ Charles R Greathouse IV, Oct 21 2022
Showing 1-10 of 12 results.
Comments