A287318
Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0
Offset: 0
Arrays start:
k\n| 0 1 2 3 4 5 6
---|---------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984
k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894
k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896
k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699
k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317
k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ... A356258
k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ...
k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ...
k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
-
A287318_row := proc(k, len) local b, ser;
b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
seq((2*i)!*coeff(ser,x,i), i=0..len-1) end:
for k from 0 to 6 do A287318_row(k, 9) od;
-
Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]
A303503
a(n) = (2*n)! * [x^(2*n)] BesselI(0,2*x)^n.
Original entry on oeis.org
1, 2, 36, 1860, 190120, 32232060, 8175770064, 2898980908824, 1369263687414480, 830988068906518380, 630109741730668410640, 583773362067938664133512, 648851848280206013365243776, 852146184628067383511375555000, 1305460597778526044143501996708800, 2307324514460203126471248458864413200
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
a:= n-> (2*n)!*b(n$2)/n!^2:
seq(a(n), n=0..17); # Alois P. Heinz, Jan 29 2023
-
Table[(2 n)! SeriesCoefficient[BesselI[0, 2 x]^n, {x, 0, 2 n}], {n, 0, 15}]
A359801
Number of 4-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.
Original entry on oeis.org
1, 8, 104, 2944, 108136, 4525888, 204981888, 9792786432, 486323201640, 24874892400064, 1302278744460352, 69474942954714112, 3764568243058030208, 206675027529594291200, 11473858525271117889536, 643154944963894079717376, 36355546411928157876528744, 2070313613815122857027563200
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..550
- Dorin Dumitraşcu and Liviu Suciu, Asymptotics for the Number of Random Walks in the Euclidean Lattice, arXiv:2212.01702 [math.CO], 2022, p.11.
- Jonathan Novak, Pólya's Random Walk Theorem, The American Mathematical Monthly, Vol. 121, No. 8 (October 2014), pp. 711-716.
Cf.
A039699,
A287317 (number of walks that return to the origin in 2n steps).
Number of walks that return to the origin for the first time in 2n steps, in 1..3 dimensions: |
A002420|,
A054474,
A049037.
-
walk4d[n_] :=
Sum[(2 n)!/(i! j! k! (n - i - j - k)!)^2, {i, 0, n}, {j, 0,
n - i}, {k, 0, n - i - j}]; invertSeq[seq_] :=
CoefficientList[1 - 1/SeriesData[x, 0, seq, 0, Length[seq], 1], x]; invertSeq[Table[walk4d[n], {n, 0, 17}]]
-
seq(n) = {my(v=Vec(2 - 1/serlaplace(besseli(0, 2*x + O(x^(2*n+1)))^4))); vector(n+1, i, v[2*i-1])} \\ Andrew Howroyd, Mar 08 2023
A356258
Number of 6-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.
Original entry on oeis.org
1, 12, 396, 19920, 1281420, 96807312, 8175770064, 748315668672, 72729762868620, 7402621930738320, 781429888276676496, 84955810313787521472, 9463540456205136873936, 1075903653146632508721600, 124461755084172965028753600, 14615050011682746903615601920
Offset: 0
a(1)=12, because twelve paths start at the origin, visit one of the adjacent vertices, and immediately return to the origin, resulting in 12 different paths of length 2n=2*1=2.
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
a:= n-> (2*n)!*b(n, 6)/n!^2:
seq(a(n), n=0..15); # Alois P. Heinz, Jan 30 2023
A361364
Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.
Original entry on oeis.org
1, 10, 170, 6500, 332050, 19784060, 1296395700, 90616189800, 6637652225250, 503852804991500, 39337349077483420, 3142010167321271000, 255747325678297576100, 21150729618673827139000, 1773152567858996728205000, 150409554094012703302602000, 12890454660664800562838261250
Offset: 0
Cf.
A287317,
A039699 (number of walks that return to the origin in 2n steps).
-
walk5d[n_] :=
Sum[(2 n)!/(i! j! k! l! (n - i - j - k - l)!)^2, {i, 0, n}, {j, 0,
n - i}, {k, 0, n - i - j}, {l, 0, n - i - j - k}]; invertSeq[seq_] :=
CoefficientList[1 - 1/SeriesData[x, 0, seq, 0, Length[seq], 1], x]; invertSeq[Table[walk5d[n], {n, 0, 15}]]
A328918
a(n) is the number of ordered pairs of positive integers (x, y) with x + y = 10^n, where x and y each have exactly n-digits but with initial zero digits allowed, and as strings, x and y are permutations of each other.
Original entry on oeis.org
1, 1, 11, 11, 281, 281, 11181, 11181, 563131, 563131, 32795191, 32795191, 2103687091, 2103687091, 144420919291, 144420919291, 10421915468041, 10421915468041, 781300466839541, 781300466839541, 60358948031151561, 60358948031151561, 4777791013174712961
Offset: 1
For n = 3, solutions are (095, 905), (185, 815), (275, 725), (365, 635), (455, 545), (500, 500), (545, 455), (635, 365), (725, 275), (815, 185), (905, 095).
- Michael W. Ecker, Problem 1016, Mathematics Magazine, Vol. 50, No. 3 (May, 1977), pp. 163-169.
Showing 1-6 of 6 results.
Comments