A328918 a(n) is the number of ordered pairs of positive integers (x, y) with x + y = 10^n, where x and y each have exactly n-digits but with initial zero digits allowed, and as strings, x and y are permutations of each other.
1, 1, 11, 11, 281, 281, 11181, 11181, 563131, 563131, 32795191, 32795191, 2103687091, 2103687091, 144420919291, 144420919291, 10421915468041, 10421915468041, 781300466839541, 781300466839541, 60358948031151561, 60358948031151561, 4777791013174712961
Offset: 1
Examples
For n = 3, solutions are (095, 905), (185, 815), (275, 725), (365, 635), (455, 545), (500, 500), (545, 455), (635, 365), (725, 275), (815, 185), (905, 095).
Links
- Michael W. Ecker, Problem 1016, Mathematics Magazine, Vol. 50, No. 3 (May, 1977), pp. 163-169.
Crossrefs
Cf. A287317.
Programs
-
PARI
seq(n)={Vec(serlaplace(besseli(0,2*x + O(x*x^n))^5)/(1-x))} \\ Andrew Howroyd, Nov 03 2019
Formula
a(n) = Sum_{k=0..floor((n-1)/2)} A287317(k). - Andrew Howroyd, Nov 03 2019
Extensions
Terms a(9) and beyond from Andrew Howroyd, Nov 03 2019
Comments