cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A287316 Square array A(n,k) = (n!)^2 [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 20, 1, 0, 1, 5, 28, 93, 70, 1, 0, 1, 6, 45, 256, 639, 252, 1, 0, 1, 7, 66, 545, 2716, 4653, 924, 1, 0, 1, 8, 91, 996, 7885, 31504, 35169, 3432, 1, 0, 1, 9, 120, 1645, 18306, 127905, 387136, 272835, 12870, 1, 0
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Comments

A287314 provide polynomials and A287315 rational functions generating the columns of the array.

Examples

			Arrays start:
k\n| 0  1    2      3         4        5          6           7
---|----------------------------------------------------------------
k=0| 1, 0,   0,      0,       0,       0,         0,          0, ... A000007
k=1| 1, 1,   1,      1,       1,       1,         1,          1, ... A000012
k=2| 1, 2,   6,     20,      70,     252,       924,       3432, ... A000984
k=3| 1, 3,  15,     93,     639,    4653,     35169,     272835, ... A002893
k=4| 1, 4,  28,    256,    2716,   31504,    387136,    4951552, ... A002895
k=5| 1, 5,  45,    545,    7885,  127905,   2241225,   41467725, ... A169714
k=6| 1, 6,  66,    996,   18306,  384156,   8848236,  218040696, ... A169715
k=7| 1, 7,  91,   1645,   36715,  948157,  27210169,  844691407, ...
k=8| 1, 8, 120,   2528,   66424, 2039808,  70283424, 2643158400, ... A385286
k=9| 1, 9, 153,   3681,  111321, 3965409, 159700401, 7071121017, ...
       A000384,A169711, A169712, A169713,                            A033935
		

Crossrefs

Rows: A000007 (k=0), A000012 (k=1), A000984 (k=2), A002893 (k=3), A002895 (k=4), A169714 (k=5), A169715 (k=6), A385286 (k=8).
Columns: A001477(n=1), A000384 (n=2), A169711 (n=3), A169712 (n=4), A169713 (n=5).
Cf. A033935 (diagonal), A287314, A287315, A287318.

Programs

  • Maple
    A287316_row := proc(k, len) local b, ser;
    b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
    seq((i!)^2*coeff(ser,x,i), i=0..len-1) end:
    for k from 0 to 6 do A287316_row(k, 9) od;
    A287316_col := proc(n, len) local k, x;
    sum(z^k/k!^2, k = 0..infinity); series(%^x, z=0, n+1):
    unapply(n!^2*coeff(%, z, n), x); seq(%(j), j=0..len) end:
    for n from 0 to 7 do A287316_col(n, 9) od;
  • Mathematica
    Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (n!)^2, {n, 0, 6}], {k, 0,9}]
  • PARI
    A287316_row(K, N) = {
      my(x='x + O('x^(2*N-1)));
      Vec(serlaplace(serlaplace(substpol(besseli(0,2*x)^K, 'x^2, 'x))));
    };
    N=8; concat([vector(N, n, n==1)], vector(9, k, A287316_row(k, N))) \\ Gheorghe Coserea, Jan 12 2018
    
  • PARI
    {A(n, k) = if(n<0 || k<0, 0, n!^2 * polcoeff(besseli(0, 2*x + x*O(x^(2*n)))^k, 2*n))}; /* Michael Somos, Dec 30 2021 */
    
  • PARI
    A(k, n) = my(x='x+O('x^(n+1))); n!^2*polcoeff(hypergeom([], [1], x)^k, n); \\ Peter Luschny, Jun 24 2025
    
  • Python
    from math import comb
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A(n,k):
        if k <= 0: return 0**n
        return sum(A(i,k-1)*comb(n,i)**2 for i in range(n+1))
    for k in range(10): print([A(n, k) for n in range(8)])
    # Jeremy Tan, Dec 10 2021

Formula

A(n,k) = A287318(n,k) / binomial(2*n,n).
If a+b=k then A(n,k) = Sum_{i=0..n} A(i,a)*A(n-i,b)*binomial(n,i)^2 (Richmond and Shallit). In particular A(n,k) = Sum_{i=0..n} A(i,k-1)*binomial(n,i)^2. - Jeremy Tan, Dec 10 2021

A169712 The function W_n(8) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 70, 639, 2716, 7885, 18306, 36715, 66424, 111321, 175870, 265111, 384660, 540709, 740026, 989955, 1298416, 1673905, 2125494, 2662831, 3296140, 4036221, 4894450, 5882779, 7013736, 8300425, 9756526, 11396295, 13234564, 15286741, 17568810, 20097331, 22889440
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Crossrefs

Column 4 of A287316.
Cf. A287314.

Programs

  • Magma
    [-33*n+82*n^2-72*n^3+24*n^4: n in [1..40]]; // Vincenzo Librandi May 28 2017
    
  • Maple
    A169712 := proc(n)
            W(n,8) ;
    end proc:
    seq(A169712(n),n=1..40) ; # uses W defined in A169715; R. J. Mathar, Mar 28 2012
    a := n -> -33*n + 82*n^2 - 72*n^3 + 24*n^4:
    seq(a(n), n=1..28); # Peter Luschny, May 27 2017
  • Mathematica
    Table[-33 n + 82 n^2 - 72 n^3 + 24 n^4, {n, 1, 40}] (* or *) CoefficientList[Series[(1 + 65 x + 299 x^2 + 211 x^3) /(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2017 *)
  • PARI
    a(n)=-33*n+82*n^2-72*n^3+24*n^4 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = -33*n + 82*n^2 - 72*n^3 + 24*n^4. - Peter Luschny, May 27 2017
G.f.: x*(1+65*x+299*x^2+211*x^3)/(1-x)^5. - Vincenzo Librandi, May 28 2017
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Vincenzo Librandi, May 28 2017

A169711 The function W_n(6) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 20, 93, 256, 545, 996, 1645, 2528, 3681, 5140, 6941, 9120, 11713, 14756, 18285, 22336, 26945, 32148, 37981, 44480, 51681, 59620, 68333, 77856, 88225, 99476, 111645, 124768, 138881, 154020, 170221, 187520, 205953, 225556, 246365, 268416, 291745, 316388
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Crossrefs

The sequence in Table 1 of the Borwein et al. reference are A000384, A109711-A109713; A000984, A002893, A002895, A169714, A169715.
Column 3 of A287316.
Cf. A287314.

Programs

  • Magma
    [6*n^3-9*n^2+4*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
    
  • Maple
    A169711 := proc(n)
            W(n,6) ;
    end proc:
    seq(A169711(n),n=1..20) ; # uses W from A169715; R. J. Mathar, Mar 28 2012
    a := n -> 6*n^3 - 9*n^2 + 4*n: seq(a(n), n=1..33); # Peter Luschny, May 27 2017
  • Mathematica
    CoefficientList[Series[(1 + 16 x + 19 x^2) / (1 - x)^4, {x, 0, 50}], x] (* or *) Table[6 n^3 - 9 n^2 + 4 n, {n, 1, 40}] (* Vincenzo Librandi, May 28 2017 *)
    LinearRecurrence[{4,-6,4,-1},{1,20,93,256},40] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n)=6*n^3-9*n^2+4*n \\ Charles R Greathouse IV, Oct 18 2022

Formula

a(n) = 6*n^3 - 9*n^2 + 4*n. - Peter Luschny, May 27 2017
G.f.: x*(1+16*x+19*x^2)/(1-x)^4. - Vincenzo Librandi, May 28 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 28 2017

A169713 The function W_n(10) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 252, 4653, 31504, 127905, 384156, 948157, 2039808, 3965409, 7132060, 12062061, 19407312, 29963713, 44685564, 64699965, 91321216, 126065217, 170663868, 227079469, 297519120, 384449121, 490609372, 619027773, 773034624, 956277025, 1172733276
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Crossrefs

Column 5 of A287316.
Cf. A287314.

Programs

  • Magma
    [120*n^5-600*n^4+1250*n^3-1225*n^2+456*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
    
  • Maple
    A169713 := proc(n)
            W(n,10) ;
    end proc:
    seq(A169713(n),n=1..20) ; # uses W() from A169715; R. J. Mathar, Mar 27 2012
    a := n -> 120*n^5 - 600*n^4 + 1250*n^3 - 1225*n^2 + 456*n:
    seq(a(n), n=1..20); # Peter Luschny, May 27 2017
  • Mathematica
    Table[120 n^5 - 600 n^4 + 1250 n^3 - 1225 n^2 + 456 n, {n, 1, 40}] (* or *) CoefficientList[Series[(1 + 246 x + 3156 x^2 + 7346 x^3 + 3651 x^4) / (1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2017 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,252,4653,31504,127905,384156},30] (* Harvey P. Dale, Aug 09 2023 *)
  • PARI
    a(n)=120*n^5-600*n^4+1250*n^3-1225*n^2+456*n \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = 120*n^5 - 600*n^4 + 1250*n^3 - 1225*n^2 + 456*n. - Peter Luschny, May 27 2017
G.f.: x*(1+246*x+3156*x^2+7346*x^3+3651*x^4)/(1-x)^6. - Vincenzo Librandi, May 28 2017
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Vincenzo Librandi, May 28 2017

A287315 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 16, 19, 0, 1, 65, 299, 211, 0, 1, 246, 3156, 7346, 3651, 0, 1, 917, 28722, 160322, 237517, 90921, 0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513, 0, 1, 12861, 2041965, 46261609, 288196659, 632274183, 520507423, 136407699
Offset: 0

Views

Author

Peter Luschny, May 29 2017

Keywords

Examples

			Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1,    3]
3: [0, 1,   16,     19]
4: [0, 1,   65,    299,     211]
5: [0, 1,  246,   3156,    7346,    3651]
6: [0, 1,  917,  28722,  160322,  237517,   90921]
7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513]
...
Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
		

Crossrefs

T(n,n) = A000275(n).
Cf. A192721 (variant), A001044, A287314, A287316.

Programs

  • Maple
    Delta := proc(a, n) local del, A, u;
    A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1));
    for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end:
    A287315_row := n -> Delta(A287314_poly(n), n):
    for n from 0 to 7 do A287315_row(n) od;
    A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
    for n from 0 to 4 do A287315_eulerian(n,x) od;

Formula

Sum_{k=0..n} T(n,k) = A001044(n).

A287696 Triangle read by rows, T(n,k) = (n!)^3 * [x^k] [z^n] hypergeom([], [1, 1], z)^x for n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, -3, 4, 0, 46, -81, 36, 0, -1899, 3916, -2592, 576, 0, 163476, -375375, 305500, -108000, 14400, 0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400, 0, 6412369860, -16976577828, 17470973569, -9168390000, 2636298000, -400075200, 25401600
Offset: 0

Views

Author

Peter Luschny, May 30 2017

Keywords

Comments

The polynomials Sum_{k=0..n} T(n,k) x^k generate the columns of A287698.

Examples

			0: [1]
1: [0,         1]
2: [0,        -3,        4]
3: [0,        46,      -81,        36]
4: [0,     -1899,     3916,     -2592,      576]
5: [0,    163476,  -375375,    305500,  -108000,    14400]
6: [0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400]
		

Crossrefs

T(n,n) = A001044(n).

Programs

  • Maple
    A287696_row := proc(n) local k; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
    n!^3*coeff(%, z, n); seq(coeff(%, x, k), k=0..n) end:
    for n from 0 to 8 do A287696_row(n) od;
    A287696_poly := proc(n) local k, x; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
    unapply(n!^3*coeff(%, z, n), x); end:
    for n from 0 to 7 do A287696_poly(n) od;
  • Mathematica
    T[n_, k_] := (n!)^3 SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, z]^x, {x, 0, k}, {z, 0, n}];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 13 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A000012(n).
Sum_{k=0..n} abs(T(n,k)) = A212856(n) = A212855_row(3).
Showing 1-6 of 6 results.