A054474 Number of walks on square lattice that start and end at origin after 2n steps, not touching origin at intermediate stages.
1, 4, 20, 176, 1876, 22064, 275568, 3584064, 47995476, 657037232, 9150655216, 129214858304, 1845409805168, 26606114089024, 386679996988736, 5658611409163008, 83302885723872852, 1232764004638179504, 18327520881735288432, 273595871825723062848
Offset: 0
Examples
a(5)=22064, i.e., there are 22064 different walks (on a square lattice) that start and end at the origin after 2*5=10 steps, avoiding the origin at intermediate steps.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..834
- S. R. Finch, Symmetric Random Walk on n-Dimensional Integer Lattice [Broken link]
- Steven R. Finch, Symmetric Random Walk on n-Dimensional Integer Lattice [Cached copy, with permission of the author]
- Markus Kuba and Alois Panholzer, Lattice paths and the diagonal of the cube, arXiv:2411.03930 [math.CO], 2024. See p. 14.
Programs
-
Maple
b:= proc(n) b(n):= binomial(2*n, n)^2 end: a:= proc(n) option remember; b(n)-add(a(n-i)*b(i), i=1..n-1) end: seq(a(n), n=0..21); # Alois P. Heinz, Dec 05 2023
-
Mathematica
m = 18; gf[x_] = 2 - Pi/(2*EllipticK[4*Sqrt[x]]); (List @@ Normal[ Series[ gf[x], {x, 0, m-1}]] /. x -> 1)[[1 ;; m+1]]*Table[4^k, {k, 0, m}] (* Jean-François Alcover, Jun 16 2011, after Vladeta Jovovic *) CoefficientList[Series[2-Pi/(2*EllipticK[16*x]),{x,0,20}],x] (* Vaclav Kotesovec, Mar 10 2014 *) CoefficientList[Series[2-ArithmeticGeometricMean[1,Sqrt[1-16x]],{x,0,20}],x] (* Thomas Dybdahl Ahle, Oct 30 2023 *)
-
PARI
a(n)=if(n<0,0,polcoeff(2-agm(1,sqrt(1-16*x+x*O(x^n))),n))
Formula
G.f.: 2 - AGM(1, (1-16*x)^(1/2)).
G.f.: 2 - 1/hypergeom([1/2,1/2],[1],16*x). - Joerg Arndt, Jun 16 2011
Let (in Maple notation) G(x):=4/Pi*EllipticK(4*t)-2/Pi*EllipticF(1/sqrt(2+4*t), 4*t)-2/Pi*EllipticF(1/sqrt(2-4*t), 4*t), then GenFunc(x):=2-1/G(x). - Sergey Perepechko, Sep 11 2004
G.f.: 2 - Pi/(2*EllipticK(4*sqrt(x))). - Vladeta Jovovic, Jun 23 2005
a(n) ~ Pi * 16^n / (n * log(n)^2) * (1 - (2*gamma + 8*log(2)) / log(n) + (3*gamma^2 + 24*log(2)*gamma + 48*log(2)^2 - Pi^2/2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019
INVERTi transform of A002894. - R. J. Mathar, Sep 24 2020
Comments