D-finite with recurrence: (n+1)^2*a(n+1) = 4*(2*n + 1)^2*a(n). -
Matthijs Coster, Apr 28 2004
a(n) ~ Pi^(-1)*n^(-1)*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
G.f.: F(1/2, 1/2; 1; 16*x) = 1 / AGM(1, (1 - 16*x)^(1/2)) = K(4*sqrt(x)) / (Pi/2), where AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre. -
Michael Somos, Mar 04 2003
G.f.: 2*EllipticK(4*sqrt(x))/Pi, using Maple's convention for elliptic integrals.
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2x)^2.
E.g.f.: (BesselI(0, 2*x))^2 = 1+2*x^2/(U(0)-2*x^2); U(k) = 2*x^2*(2*k+1)+(k+1)^3-2*x^2*(2*k+3)*(k+1)^3/U(k+1); (continued fraction). -
Sergei N. Gladkovskii, Nov 23 2011
In generally, for (BesselI(b, 2x))^2=((x^(2*b))/(GAMMA(b+1))^2)*(1+(2*x^2)*(2*b+1)/(Q(0)-(2*x^2)*(2*b+1)); Q(k)=(2*x^2)*(2*k+2*b+1)+(k+1)*(k+b+1)*(k+2*b+1)-(2*x^2)*(k+1)*(k+b+1)*(k+2*b+1)*(2*k+2*b+3)/Q(k+1)); (continued fraction). -
Sergei N. Gladkovskii, Nov 23 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 4*(2*k+1)^2*x*(1+4*x)^2/(4*(2*k+1)^2*x*(1+4*x)^2 + (k+1)^2*(1+4*x)^2/G(k+1) )); (continued fraction). -
Sergei N. Gladkovskii, Aug 01 2013
0 = +a(n)*(+393216*a(n+2) -119040*a(n+3) +6860*a(n+4)) +a(n+1)*(-16128*a(n+2) +6928*a(n+3) -465*a(n+4)) +a(n+2)*(+36*a(n+2) -63*a(n+3) +6*a(n+4)) for all n in Z. -
Michael Somos, Aug 06 2014
Integral representation as the n-th moment of a positive function W(x) on (0,16), in Maple notation, W(x) = EllipticK(sqrt(1-x/16))/(2*Pi^2*sqrt(x)); a(n) = Integral_{x=0..16} x^n*W(x) dx, n>=0. The function W(x) is singular at x=0 and W(16) = 1/(16*Pi). This representation is unique since W(x) is the solution of the Hausdorff moment problem. - Stanley Smith and
Karol A. Penson, Jun 19 2015
a(n) ~ 16^n*(2-2/(8*n+2)^2+21/(8*n+2)^4-671/(8*n+2)^6+45081/(8*n+2)^8)^2/((4*n+1)* Pi). -
Peter Luschny, Oct 14 2015
a(n) = binomial(2*n,n)*binomial(2*n,n) = ( [x^n](1 + x)^(2*n) ) *( [x^n](1 + x)^(2*n) ) = [x^n](F(x)^(4*n)), where F(x) = 1 + x + x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 798*x^6 + 5697*x^7 + ... appears to have integer coefficients. For similar results see
A000897,
A002897,
A006480,
A008977,
A186420 and
A188662. -
Peter Bala, Jul 14 2016
a(n) = Sum_{k = 0..n} binomial(2*n + k,k)*binomial(n,k)^2. Cf.
A005258(n) = Sum_{k = 0..n} binomial(n + k,k)*binomial(n,k)^2. -
Peter Bala, Jul 27 2016
a(n) = 16^n*hypergeom([1/2, -2*n, 2*n + 1], [1, 1], 1). -
Peter Luschny, Mar 14 2018
The right-hand side of the binomial coefficient identity Sum_{k = 0..n} C(n,k)*C(n+k,k)*C(2*n+2*k,n+k)*(-4)^(n-k) = a(n). -
Peter Bala, Mar 16 2018
a(n) = [x^n] (1 - x)^(2*n) * P(2*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Compare with
A245086(n) = [x^n] (1 - x)^(2*n) * P(n,(1 + x)/(1 - x)). -
Peter Bala, Mar 23 2022
a(n) = Sum_{k=0..n} multinomial(2n [k k (n-k) (n-k)]), which is another way to count random walks on Z^2, with steps of (0,+-1) or (+-1,0), that return to the point of origin after 2n steps (not necessarily for the first time), as is C(2n,n)^2. -
Shel Kaphan, Jan 12 2023
0 = a(n)*(+393216*a(n+2) -119040*a(n+3) +6860*a(n+4)) +a(n+1)*(-16128*a(n+2) +6928*a(n+3) -465*a(n+4)) +a(n+2)*(+36*a(n+2) -63*a(n+3) +6*a(n+4)) for n>=0. -
Michael Somos, May 30 2023
Right-hand side of the binomial coefficient identities
1) Sum_{k = 0..n} (-1)^(n+k) * C(n,k)*C(n+k,n)*C(2*n+k,n) = a(n).
2) 2*Sum_{k = 0..n} (-1)^(n+k) * C(n,k)*C(n+k-1,n)*C(2*n+k-1,n) = a(n) for n >= 1.
3) (4/3)*Sum_{k = 0..n} (-1)^(n+k) * C(n,k)*C(n+k,n)*C(2*n+k-1,n) = a(n) for n >= 1. (End)
Comments