cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361397 Number A(n,k) of k-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 20, 4, 0, 1, 8, 54, 176, 10, 0, 1, 10, 104, 996, 1876, 28, 0, 1, 12, 170, 2944, 22734, 22064, 84, 0, 1, 14, 252, 6500, 108136, 577692, 275568, 264, 0, 1, 16, 350, 12144, 332050, 4525888, 15680628, 3584064, 858, 0
Offset: 0

Views

Author

Alois P. Heinz, Mar 10 2023

Keywords

Comments

Column k is INVERTi transform of k-th row of A287318.

Examples

			Square array A(n,k) begins:
  1,  1,     1,      1,       1,        1,        1, ...
  0,  2,     4,      6,       8,       10,       12, ...
  0,  2,    20,     54,     104,      170,      252, ...
  0,  4,   176,    996,    2944,     6500,    12144, ...
  0, 10,  1876,  22734,  108136,   332050,   796860, ...
  0, 28, 22064, 577692, 4525888, 19784060, 62039088, ...
		

Crossrefs

Columns k=0-5 give: A000007, |A002420|, A054474, A049037, A359801, A361364.
Rows n=0-2 give: A000012, A005843, A139271.
Main diagonal gives A361297.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
        end:
    g:= proc(n, k) option remember; `if` (n<1, -1,
          -add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n))
        end:
    A:= (n,k)-> `if`(n=0, 1, `if`(k=0, 0, g(n, k))):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, 0] = 0; b[n_, 1] = 1; b[0, k_] = 1;
    b[n_, k_] := b[n, k] = Sum[Binomial[n, i]^2*b[i, k - 1], {i, 0, n}]; (* A287316 *)
    g[n_, k_] := g[n, k] = b[n, k]*Binomial[2 n, n]; (* A287318 *)
    a[n_, k_] := a[n, k] = g[n, k] - Sum[a[i, k]*g[n - i, k], {i, 1, n - 1}];
    TableForm[Table[a[n, k], {k, 0, 10}, {n, 0, 10}]] (* Shel Kaphan, Mar 14 2023 *)

Formula

A(n,1)/2 = A000108(n-1) for n >= 1.
G.f. of column k: 2 - 1/Integral_{t=0..oo} exp(-t)*BesselI(0,2*t*sqrt(x))^k dt. - Shel Kaphan, Mar 19 2023

A303503 a(n) = (2*n)! * [x^(2*n)] BesselI(0,2*x)^n.

Original entry on oeis.org

1, 2, 36, 1860, 190120, 32232060, 8175770064, 2898980908824, 1369263687414480, 830988068906518380, 630109741730668410640, 583773362067938664133512, 648851848280206013365243776, 852146184628067383511375555000, 1305460597778526044143501996708800, 2307324514460203126471248458864413200
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
        end:
    a:= n-> (2*n)!*b(n$2)/n!^2:
    seq(a(n), n=0..17);  # Alois P. Heinz, Jan 29 2023
  • Mathematica
    Table[(2 n)! SeriesCoefficient[BesselI[0, 2 x]^n, {x, 0, 2 n}], {n, 0, 15}]

Formula

a(n) = A287318(n,n).
a(n) ~ c * d^n * n^(2*n), where c = 1.72802011936236389522137050964080... and d = 1.1381284656425793765251319541847869000364101065484286935... - Vaclav Kotesovec, Apr 26 2018
a(n) = A000984(n)*A033935(n). - Alois P. Heinz, Jan 30 2023
Showing 1-2 of 2 results.