cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A000275 Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of permutations with rise/rise forbidden.

Original entry on oeis.org

1, 1, 3, 19, 211, 3651, 90921, 3081513, 136407699, 7642177651, 528579161353, 44237263696473, 4405990782649369, 515018848029036937, 69818743428262376523, 10865441556038181291819, 1923889742567310611949459, 384565973956329859109177427, 86180438505835750284241676121
Offset: 0

Views

Author

Keywords

Comments

a(n) has the Lucas property, namely a(n) is congruent to a(n_0)a(n_1)...a(n_k) modulo p for any prime p where n_0,n_1,... are the base p digits of n. (Carlitz via McIntosh)

Examples

			From _Peter Bala_, Aug 08 2011: (Start)
a(3) = 19: The 19 pairs of permutations in the group S_3 x S_3 with no common rises correspond to the zero entries in the table below.
  ======================================
   Number of common rises in S_3 x S_3
  ======================================
     | 123   132   213   231   312   321
  ======================================
  123|  2     1     1     1     1     0
  132|  1     1     0     1     0     0
  213|  1     0     1     0     1     0
  231|  1     1     0     1     0     0
  312|  1     0     1     0     1     0
  321|  0     0     0     0     0     0
(End)
G.f. = 1 + x + 3*x^2 + 19*x^3 + 211*x^4 + 3651*x^5 + 90921*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 2 of A212855.
Cf. A055133 (absolute value of column 0 of triangle), A192721 (column 1), A115368.
Column k=1 of A340986.

Programs

  • Maple
    A000275 := proc(n) sum(z^k/k!^2, k = 0..infinity);
    series(%^x, z=0, n+1): n!^2*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
    seq(A000275(n), n=0..17); # Peter Luschny, May 27 2017
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(r+n+1)*Binomial[n, r]^2 a[r], {r, 0, n-1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 05 2013 *)
    CoefficientList[Series[1/BesselJ[0,Sqrt[4*x]], {x, 0, 20}], x]* Range[0, 20]!^2 (* Vaclav Kotesovec, Mar 02 2014 *)
    a[ n_] := If[ n < 0, 0, (n! 2^n)^2 SeriesCoefficient[ 1 / BesselJ[ 0, x], {x, 0, 2 n}]]; (* Michael Somos, Aug 20 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n!^2 * 4^n * polcoeff( 1 / besselj(0, x + x * O(x^(2*n))), 2*n))}; /* Michael Somos, May 17 2004 */

Formula

a(n) = Sum_{r=0..n-1} (-1)^(r+n+1) binomial(n, r)^2 a(r), if n > 0.
Sum_{n>=0} a(n) * x^n / n!^2 = 1 / J_0(sqrt(4*x)). - _Michael Somos, May 17 2004
From Peter Bala, Aug 08 2011: (Start)
Conjectural formula: 1 = Sum_{n>=0} a(n)*x^n*Sum_{k>=0} binomial(n+k,k)^2*(-x)^k.
Apart from the initial term, first column of A192721. (End)
E.g.f.: 1/J_0(sqrt(4*x)) = 1 + x/Q(0), where Q(k) = (k+1)^2 - x + (k+1)^2*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2013
a(n) ~ c * (n!)^2 / r^n, where r = (1/4)*BesselJZero[0,1]^2 = 1.4457964907366961302939989396139517587678604516... and c = 1/(sqrt(r) * BesselJ(1, 2*sqrt(r))) = 1.60197469692804662664846689139151227422675123376219... - Vaclav Kotesovec, Mar 02 2014, updated Apr 01 2018

Extensions

More terms from Christian G. Bower, Apr 25 2000

A115369 Decimal expansion of first zero of BesselJ(1,z).

Original entry on oeis.org

3, 8, 3, 1, 7, 0, 5, 9, 7, 0, 2, 0, 7, 5, 1, 2, 3, 1, 5, 6, 1, 4, 4, 3, 5, 8, 8, 6, 3, 0, 8, 1, 6, 0, 7, 6, 6, 5, 6, 4, 5, 4, 5, 2, 7, 4, 2, 8, 7, 8, 0, 1, 9, 2, 8, 7, 6, 2, 2, 9, 8, 9, 8, 9, 9, 1, 8, 8, 3, 9, 3, 0, 9, 5, 1, 9, 0, 1, 1, 4, 7, 0, 2, 1, 4, 1, 1, 2, 8, 7, 4, 7, 5, 7, 4, 2, 3, 1, 2, 6, 7, 2, 4, 4, 7
Offset: 1

Views

Author

Eric W. Weisstein, Jan 21 2006

Keywords

Comments

Also the first root of the sinc(2,x) function, that is, the radial component of the 2D Fourier transform of a 2-dimensional unit disc. - Stanislav Sykora, Nov 14 2013
Also the first root of the derivative of BesselJ_0. - Jean-François Alcover, Jul 01 2015

Examples

			3.8317059702075123156...
		

Crossrefs

Programs

A002190 Sum_{n>=0} a(n)*x^n/n!^2 = -log(BesselJ(0,2*sqrt(x))).

Original entry on oeis.org

0, 1, 1, 4, 33, 456, 9460, 274800, 10643745, 530052880, 32995478376, 2510382661920, 229195817258100, 24730000147369440, 3113066087894608560, 452168671458789789504, 75059305956331837485345, 14121026957032156557396000, 2988687741694684876495689040
Offset: 0

Views

Author

Keywords

Comments

Number of non-ambiguous trees, see the Aval et al. reference. - Joerg Arndt, May 11 2015

Examples

			-log( Sum_{n>=0} (-x)^n/n!^2 ) = x + x^2/2!^2 + 4*x^3/3!^2 + 33*x^4/4!^2 + 456*x^5/5!^2 + 9460*x^6/6!^2 + ... . -_Paul D. Hanna_, Oct 09 2010
		

References

  • Stany De Smedt, On Sloane's Sequence 1484, Saitama Math. J. 15 (1997), 9-13.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A101981. A diagonal of A217940.
Cf. A115368.

Programs

  • Maple
    a:= n-> coeff(series(-ln(BesselJ(0,2*sqrt(x))), x, n+1), x, n)*(n!)^2:
    seq(a(n), n=0..30); # Alois P. Heinz, Oct 10 2010
  • Mathematica
    nn=18; CoefficientList[Series[-Log[BesselJ[0, 2*Sqrt[x]]], {x, 0, nn}], x]*Table[n!^2, {n, 0, nn}] (* Jean-François Alcover, Jun 22 2011 *)
    Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[Binomial[n-1, j]*Binomial[n-1, j+1]*Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], { n-2}]; a[n_] := q[n, n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    N=66; x='x+O('x^N);
    f=-log(sum(n=0,N, (-x)^n/(n!)^2) );
    f=serlaplace(f);
    f=serlaplace(f);
    concat([0],Vec(f))
    \\ Joerg Arndt, May 17 2013
    
  • PARI
    \\ Terms starting from a(1)=1:
    N=33; B=vector(N);  B[1]=1;  b(j)=B[j+1];
    for(n=0,N-2, B[n+2]=sum(i=0,n, my(j=n-i); binomial(n+1,i)*binomial(n+1,j)*b(i)*b(j) ) ); B
    \\ Joerg Arndt, May 11 2015

Formula

Conjecture: G.f.: 1 = Sum_{n>=0} a(n+1)*A000108(n)*x^n*Sum_{k>=0} C(2*n+k,k)^2*(-x)^k. Compare with the following g.f of the Catalan numbers (A000108): 1 = Sum_{n>=0} A000108(n)*x^n*Sum_{k>=0} C(2*n+k,k)*(-x)^k. - Paul D. Hanna, Oct 10 2010
a(n) ~ n! * (n-1)! / r^n, where r = 1/4*BesselJZero[0,1]^2 = 1.44579649073669613... - Vaclav Kotesovec, Mar 02 2014
a(0) = 0; a(n) = -(-1)^n + (1/n) * Sum_{k=1..n-1} (-1)^(n-k-1) * binomial(n,k)^2 * k * a(k). - Ilya Gutkovskiy, Jul 15 2021

Extensions

More terms and better definition from Vladeta Jovovic, Jul 16 2006
Edited by Assoc. Editors of the OEIS, Oct 12 2010

A340986 Square array read by descending antidiagonals. T(n,k) is the number of ways to separate the columns of an ordered pair of n-permutations (that have been written as a 2 X n array, one atop the other) into k cells so that no cell has a column rise. For n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 19, 0, 1, 4, 21, 92, 211, 0, 1, 5, 36, 255, 1354, 3651, 0, 1, 6, 55, 544, 4725, 29252, 90921, 0, 1, 7, 78, 995, 12196, 123903, 873964, 3081513, 0, 1, 8, 105, 1644, 26215, 377904, 4368729, 34555880, 136407699, 0
Offset: 0

Views

Author

Geoffrey Critzer, Feb 01 2021

Keywords

Comments

A column rise (cf. A000275) means a pair of adjacent columns within a cell where each entry in the first column is less than the adjacent entry in the second column. The order of the columns cannot change. The cells are allowed to be empty.

Examples

			Square array T(n,k) begins:
  1,    1,     1,      1,      1,      1, ...
  0,    1,     2,      3,      4,      5, ...
  0,    3,    10,     21,     36,     55, ...
  0,   19,    92,    255,    544,    995, ...
  0,  211,  1354,   4725,  12196,  26215, ...
  0, 3651, 29252, 123903, 377904, 939155, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Section 3.13.

Crossrefs

Columns k=0-4 give: A000007, A000275, A336271, A336638, A336639.
Rows n=0-2 give: A000012, A001477, A014105.
Main diagonal gives A336665.

Programs

  • Maple
    T:= (n, k)-> n!^2*coeff(series(1/BesselJ(0, 2*sqrt(x))^k, x, n+1), x, n):
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Feb 02 2021
  • Mathematica
    nn = 6; B[n_] := n!^2; e[x_] := Sum[x^n/B[n], {n, 0, nn}];
    Table[Table[B[n], {n, 0, nn}] PadRight[CoefficientList[Series[e[-x]^-k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Grid

Formula

Let E(x) = Sum_{n>=0} x^n/n!^2. Then Sum_{n>=0} T(n,k)*x^n/n!^2 = 1/E(-x)^k.
T(n,k) = (n!)^2 * [x^n] 1/BesselJ(0,2*sqrt(x))^k. - Alois P. Heinz, Feb 02 2021
For fixed k>=1, T(n,k) ~ n!^2 * n^(k-1) / ((k-1)! * r^(n + k/2) * BesselJ(1, 2*sqrt(r))^k), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 11 2025

A115370 Decimal expansion of first zero of BesselJ(2,z).

Original entry on oeis.org

5, 1, 3, 5, 6, 2, 2, 3, 0, 1, 8, 4, 0, 6, 8, 2, 5, 5, 6, 3, 0, 1, 4, 0, 1, 6, 9, 0, 1, 3, 7, 7, 6, 5, 4, 5, 6, 9, 7, 3, 7, 7, 2, 3, 4, 7, 5, 0, 0, 5, 5, 0, 9, 4, 3, 3, 5, 8, 2, 5, 7, 2, 5, 7, 4, 5, 9, 9, 8, 1, 9, 6, 6, 1, 0, 7, 9, 2, 8, 4, 8, 7, 9, 4, 2, 3, 6, 8, 1, 9, 7, 2, 8, 7, 4, 5, 0, 4, 6, 2, 8, 7, 8, 3, 2
Offset: 1

Views

Author

Eric W. Weisstein, Jan 21 2006

Keywords

Comments

Also the first root of the sinc(4,x) function, that is, the radial component of the 4D Fourier transform of 4-dimensional unit sphere. Also, the solution of 2J_1(x) = x*J_0(x). - Stanislav Sykora, Nov 14 2013

Examples

			5.1356223018406825563...
		

Crossrefs

Programs

A115371 Decimal expansion of first zero of BesselJ(3,z).

Original entry on oeis.org

6, 3, 8, 0, 1, 6, 1, 8, 9, 5, 9, 2, 3, 9, 8, 3, 5, 0, 6, 2, 3, 6, 6, 1, 4, 6, 4, 1, 9, 4, 2, 7, 0, 3, 3, 0, 5, 3, 2, 6, 3, 0, 3, 6, 9, 1, 9, 0, 3, 0, 8, 8, 3, 2, 7, 1, 0, 7, 1, 8, 8, 2, 8, 4, 2, 5, 1, 1, 1, 9, 5, 7, 8, 0, 9, 0, 1, 1, 1, 3, 0, 8, 0, 7, 0, 7, 4, 5, 7, 9, 0, 4, 3, 5, 7, 9, 5, 1, 9, 5, 6, 9, 3, 6, 4
Offset: 1

Views

Author

Eric W. Weisstein, Jan 21 2006

Keywords

Examples

			6.3801618959239835062...
		

Crossrefs

Programs

A115372 Decimal expansion of first zero of BesselJ(4,z).

Original entry on oeis.org

7, 5, 8, 8, 3, 4, 2, 4, 3, 4, 5, 0, 3, 8, 0, 4, 3, 8, 5, 0, 6, 9, 6, 3, 0, 0, 0, 7, 9, 8, 5, 6, 1, 7, 4, 1, 7, 3, 6, 9, 9, 7, 7, 9, 0, 1, 3, 1, 2, 9, 8, 1, 2, 1, 1, 0, 1, 5, 5, 1, 5, 7, 8, 7, 0, 5, 2, 6, 7, 4, 6, 6, 4, 9, 5, 3, 7, 4, 6, 8, 0, 7, 2, 1, 6, 7, 0, 0, 0, 2, 0, 6, 2, 4, 0, 7, 5, 5, 1, 0, 5, 9, 8, 1, 8
Offset: 1

Views

Author

Eric W. Weisstein, Jan 21 2006

Keywords

Examples

			7.5883424345038043850...
		

Crossrefs

Programs

A115373 Decimal expansion of first zero of BesselJ(5,z).

Original entry on oeis.org

8, 7, 7, 1, 4, 8, 3, 8, 1, 5, 9, 5, 9, 9, 5, 4, 0, 1, 9, 1, 2, 2, 8, 6, 7, 1, 3, 3, 4, 0, 9, 5, 6, 0, 5, 6, 2, 9, 8, 1, 0, 7, 7, 0, 1, 4, 8, 9, 7, 3, 9, 5, 5, 0, 8, 6, 4, 5, 0, 0, 7, 2, 2, 0, 8, 6, 2, 5, 0, 7, 8, 7, 5, 1, 0, 1, 8, 8, 6, 1, 7, 3, 3, 0, 6, 1, 8, 6, 0, 9, 6, 4, 6, 6, 8, 5, 2, 9, 6, 8, 1, 4, 5, 1, 3
Offset: 1

Views

Author

Eric W. Weisstein, Jan 21 2006

Keywords

Examples

			8.7714838159599540191...
		

Crossrefs

Programs

A375451 Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(n,k)^2 * ([x^k] A(x)^n) for n >= 1.

Original entry on oeis.org

1, 1, 3, 21, 264, 5100, 138595, 5021209, 233863116, 13628372628, 972514037307, 83479400425677, 8490972592164813, 1010263560882000981, 139051185192340895094, 21926159523172792097194, 3927328317712845680689864, 793059545751159815604109176, 179339266160209677707004583560
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2024

Keywords

Comments

Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n,k) * ([x^k] G(x)^n) is satisfied by G(x) = 1/(1-x) for n >= 1.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 264*x^4 + 5100*x^5 + 138595*x^6 + 5021209*x^7 + 233863116*x^8 + ...
The table of coefficients of x^k in A(x)^n begins:
  n=1: [1, 1,  3,  21,  264,  5100,  138595, ...];
  n=2: [1, 2,  7,  48,  579, 10854,  289415, ...];
  n=3: [1, 3, 12,  82,  954, 17352,  453657, ...];
  n=4: [1, 4, 18, 124, 1399, 24696,  632656, ...];
  n=5: [1, 5, 25, 175, 1925, 33001,  827900, ...];
  n=6: [1, 6, 33, 236, 2544, 42396, 1041046, ...];
  ...
from which we may illustrate the defining property given by
0 = Sum_{k=0..n} (-1)^k * binomial(n,k)^2 * ([x^k] A(x)^n).
Using the coefficients in the table above, we see that
  n=1: 0 = 1*1 - 1*1;
  n=2: 0 = 1*1 - 4*2 + 1*7;
  n=3: 0 = 1*1 - 9*3 + 9*12 - 1*82;
  n=4: 0 = 1*1 - 16*4 + 36*18 - 16*124 + 1*1399;
  n=5: 0 = 1*1 - 25*5 + 100*25 - 100*175 + 25*1925 - 1*33001;
  n=6: 0 = 1*1 - 36*6 + 225*33 - 400*236 + 225*2544 - 36*42396 + 1*1041046;
  ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = sum(k=0,#A-1, (-1)^(#A-k) * binomial(#A-1,k)^2 * polcoef(Ser(A)^(#A-1),k) )/(#A-1) ); A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * d^n * n!^2, where d = 0.691660276122579707675... = 4/BesselJZero(0,1)^2 = 4/A115368^2 and c = 3.8999463598998648630203... - Vaclav Kotesovec, Sep 10 2024

A181167 G.f.: 1 = Sum_{n>=0} a(n)*x^n* Sum_{k>=0} C(2n+k,k)^2*(-x)^k.

Original entry on oeis.org

1, 1, 8, 165, 6384, 397320, 36273600, 4566166605, 757975618400, 160424015864112, 42164387189608320, 13473505313334666600, 5144136790654611953280, 2312696796696904699224000, 1209297981696245764641077760, 727688337054213932985609546525
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2010

Keywords

Comments

Compare g.f. to a g.f of the Catalan numbers: 1 = Sum_{n>=0} A000108(n)*x^n * Sum_{k>=0} C(2n+k,k)*(-x)^k.

Examples

			E.g.f.: E(x) = 1 + x^2/2! + 8*x^4/4! + 165*x^6/6! + 6384*x^8/8! +...
where the e.g.f. equals the continued fraction:
E(x) = 1/(1 - x^2/(2 - x^2/(3 - x^2/(4 - x^2/(5 - x^2/(6 - x^2/(7 - x^2/(8 - x^2/(9 - x^2/(10 - ...)))))))))). [Due to Matthieu Josuat-Vergès]
Illustrate the g.f. by the series:
1 = 1*(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 +...)
+ 1*x*(1 - 3^2*x + 6^2*x^2 - 10^2*x^3 + 15^2*x^4 - 21^2*x^5 +...)
+ 8*x^2*(1 - 5^2*x + 15^2*x^2 - 35^2*x^3 + 70^2*x^4 - 126^2*x^5 +...)
+ 165*x^3*(1 - 7^2*x + 28^2*x^2 - 84^2*x^3 + 210^2*x^4 - 462^2*x^5+...)
+ 6384*x^4*(1 - 9^2*x + 45^2*x^2 - 165^2*x^3 + 495^2*x^4 +...)
+ 397320*x^5*(1 - 11^2*x + 66^2*x^2 - 286^2*x^3 + 1001^2*x^4 +...)
+ 36273600*x^6*(1 - 13^2*x + 91^2*x^2 - 455^2*x^3 + 1820^2*x^4 +...)
+ 4566166605*x^7*(1 - 15^2*x + 120^2*x^2 - 680^2*x^3 + 3060^2*x^4 +...)
+...
Compare to a g.f. of the Catalan numbers (A000108):
1 = 1*(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 +...)
+ 1*x*(1 - 3*x + 6*x^2 - 10*x^3 + 15*x^4 - 21*x^5 +...)
+ 2*x^2*(1 - 5*x + 15*x^2 - 35*x^3 + 70*x^4 - 126*x^5 +...)
+ 5*x^3*(1 - 7*x + 28*x^2 - 84*x^3 + 210*x^4 - 462*x^5 +...)
+ 14*x^4*(1 - 9*x + 45*x^2 - 165*x^3 + 495*x^4 - 1287*x^5 +...)
+ 42*x^5*(1 - 11*x + 66*x^2 - 286*x^3 + 1001*x^4 - 3003*x^5 +...)
+ 132*x^6*(1 - 13*x + 91*x^2 - 455*x^3 + 1820*x^4 - 6188*x^5 +...)
+...
Surprisingly, terms a(n) are divisible by n*A000108(n) for n>0:
a(2)=2*2*2, a(3)=3*5*11, a(4)=4*14*114, a(5)=5*42*1892, a(6)=6*132*45800, a(7)=7*429*1520535, ..., a(n)=n*A000108(n)*A181168(n).
		

Crossrefs

Cf. A002190. [From Paul D. Hanna, Oct 09 2010]
Cf. A115368.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, 1, x/(y+1)*(b(x-1, y-1)+b(x-1, y+1))))
        end:
    a:= n-> b(2*n, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 08 2018
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[BesselJ[1,2*x]/x/BesselJ[0,2*x],{x,0,2*nmax}],x] * Range[0,2*nmax]!)[[2*n-1]],{n,1,nmax}] (* Vaclav Kotesovec, Jul 31 2014 *)
  • PARI
    {a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*sum(k=0, n-m, binomial(2*m+k, k)^2*(-x)^k)+x*O(x^n)), n))}
    
  • PARI
    /* Formula: a(n) = A000108(n)*A002190(n+1) implies: */
    {a(n)=binomial(2*n,n)/(n+1)*(n+1)!^2*polcoeff(-log(sum(m=0,n+1,(-x)^m/m!^2)+O(x^(n+2))),n+1)} \\ Paul D. Hanna, Oct 09 2010
    
  • PARI
    /* Continued Fraction expansion of the E.G.F.: */
    {a(n)=local(CF=1+O(x));for(i=0,n,CF=1/((n-i+1)-x^2*CF));(2*n)!*polcoeff(CF,2*n)}

Formula

a(n) = n*A000108(n)*A181168(n) = C(2n,n-1)*A181168(n) for n>0, with a(0)=1.
a(n) = A000108(n)*A002190(n+1), where A002190 describes the coefficients in -log(BesselJ(0,2*sqrt(x))) and A000108 is the Catalan numbers. - Paul D. Hanna, Oct 09 2010
Differentiating -log(BesselJ(0,2*sqrt(x))) and substituting z=z^2 gives the e.g.f. Sum_{n>=0} a(n) * z^(2*n)/(2n)! = BesselJ(1,2*z)/z/BesselJ(0,2*z). Consequently, using Gauss' continued fraction, this e.g.f. is also: 1/(1-z^2/(2-z^2/(3-z^2/(4-z^2/(5-z^2/...))))). - Matthieu Josuat-Vergès, Apr 17 2011
E.g.f.: U(0) where U(k) = 1 - x^2/(x^2 - (k+1)*(k+2)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Nov 15 2012
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = 16/BesselJZero[0,1]^2 = 2.76664110449031883070186935..., c = 4/(sqrt(Pi)*BesselJZero[0,1]^2) = 0.390227523142124366836071453... . - Vaclav Kotesovec, Jul 31 2014
Showing 1-10 of 24 results. Next