A212855
T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1
Some solutions for n=3 and k=4:
2 1 3 0 1 3 0 2 3 0 2 1 1 3 0 2 1 3 2 0
2 0 1 3 1 3 0 2 3 1 2 0 1 0 3 2 1 3 0 2
2 3 0 1 3 0 2 1 2 3 1 0 2 0 3 1 3 1 0 2
Table starts:
1 1 1 1 1 1 1
1 3 19 211 3651 90921 3081513
1 7 163 8983 966751 179781181 53090086057
1 15 1135 271375 158408751 191740223841 429966316953825
1 31 7291 7225951 21855093751 164481310134301 2675558106868421881
1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
- Alois P. Heinz, Antidiagonals n = 1..45 (first 20 antidiagonals from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554); see Eqs. (6) on p. 248 and (8) on p. 249 with t=0.
- Yifei Li and Sheila Sundaram, Homology of Segre products of Boolean and subspace lattices, arXiv:2408.08421 [math.CO], 2024. See p. 17.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
-
A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);
series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;
seq(add(abs(k), k=%(j,m)), j=1..len) end:
for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1, -add(
binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))
end:
seq(seq(T(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Apr 26 2020
-
rows = 9;
row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];
T = Table[row[n, rows+1], {n, 1, rows}];
Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
A212856
Number of 3 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 7, 163, 8983, 966751, 179781181, 53090086057, 23402291822743, 14687940716402023, 12645496977257273257, 14490686095184389113277, 21557960797148733086439949, 40776761007750226749220637461, 96332276574683758035941025907591
Offset: 0
Some solutions for n=3:
2 1 0 2 0 1 1 2 0 0 2 1 2 0 1 2 1 0 2 1 0
0 2 1 2 0 1 0 2 1 2 1 0 2 1 0 2 1 0 2 0 1
0 2 1 2 1 0 2 0 1 2 0 1 0 1 2 1 2 0 2 0 1
-
A212856 := proc(n) sum(z^k/k!^3, k = 0..infinity);
series(%^x, z=0, n+1): n!^3*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212856(n), n=0..14); # Peter Luschny, May 27 2017
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, -add(
binomial(n, j)^3*(-1)^j*a(n-j), j=1..n))
end:
seq(a(n), n=0..15); # Alois P. Heinz, Apr 26 2020
-
f[0] = 1; f[n_] := f[n] = Sum[(-1)^(n+k+1)*f[k]*Binomial[n, k]^2/(n-k)!, {k, 0, n-1}]; a[n_] := f[n]*n!; Array[a, 14] (* Jean-François Alcover, Feb 27 2018, after Daniel Suteu *)
A212853
Number of n X 6 arrays with rows being permutations of 0..5 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 90921, 179781181, 191740223841, 164481310134301, 128645361626874561, 96426023622482278621, 70816637331790329140481, 51492108377805402906874141, 37256471170472317193421713601, 26890352949868734582700237312861
Offset: 1
Some solutions for n=3:
0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5
3 0 2 4 5 1 1 3 0 4 5 2 4 0 3 1 2 5 0 1 5 2 3 4
1 2 4 0 3 5 5 0 4 2 3 1 2 1 5 4 3 0 3 1 5 0 4 2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212854,
A212855,
A212856,
A212857,
A309951,
A325305.
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 6];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A309951
Irregular triangular array, read by rows: T(n,k) is the sum of the products of multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A000041(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11481
Offset: 0
Triangle begins as follows:
[n=0]: 1, 1;
[n=1]: 1, 1;
[n=2]: 1, 3, 2;
[n=3]: 1, 10, 27, 18;
[n=4]: 1, 47, 718, 4416, 10656, 6912;
[n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Since |P_3| = A000041(3) = 3, the recurrence of _R. H. Hardin_ for column n = 3 of array A212855 is T(3,0)*R(m,3) - T(3,1)*R(m-1,3) + T(3,2)*R(m-2,3) - T(3,3)*R(m-3,3) = 0; i.e., R(m,3) - 10*R(m-1,3) + 27*R(m-2,3) - 18*R(m-3,3) = 0 for m >= 4. We have the initial conditions R(m=1,3) = 1, R(m=2,3) = 19, and R(m=3,3) = 163. Thus, R(m,3) = 6^m - 2*3^m + 1 = A212850(m) for m >= 1. See the documentation of array A212855.
- Alois P. Heinz, Rows n = 0..14, flattened
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
Cf.
A000012 (column k=0),
A000041,
A005651 (column k=1),
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212855,
A212856,
A212857,
A212858,
A212859,
A212860.
Rightmost terms in rows give
A309972.
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [map(x->
binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]])
end:
b:= proc(n, m) option remember; `if`(n=0, 1,
expand(b(n-1, m)*(g(m$2)[n]*x+1)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
seq(T(n), n=0..7); # Alois P. Heinz, Aug 25 2019
-
g[n_, i_] := g[n, i] = If[n==0 || i==1, {n!}, Join[Binomial[n, i]*#& /@ g[n - i, Min[n - i, i]], g[n, i - 1]]];
b[n_, m_] := b[n, m] = If[n==0, 1, Expand[b[n-1, m]*(g[m, m][[n]]*x+1)]];
T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 18 2021, after Alois P. Heinz *)
A212858
Number of 5 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 31, 7291, 7225951, 21855093751, 164481310134301, 2675558106868421881, 84853928323286139485791, 4849446032811641059203617551, 469353176282647626764795665676281, 73159514984813223626195834388445570381, 17619138865526260905773841471696025142373661
Offset: 0
Some solutions for n=3:
2 0 1 0 1 2 0 2 1 0 2 1 1 2 0 0 2 1 2 0 1
2 0 1 2 1 0 0 1 2 0 2 1 0 1 2 1 2 0 2 0 1
0 1 2 2 0 1 0 2 1 2 1 0 0 1 2 0 1 2 2 1 0
2 0 1 0 1 2 1 2 0 0 2 1 1 0 2 2 1 0 1 0 2
1 2 0 0 2 1 2 1 0 1 2 0 0 1 2 2 1 0 2 1 0
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212859,
A212860,
A336197.
-
A212858 := proc(n) sum(z^k/k!^5, k = 0..infinity);
series(%^x, z=0, n+1): n!^5*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212858(n), n=1..12); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[5, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212859
Number of 6 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 63, 45199, 182199871, 2801736968751, 128645361626874561, 14895038886845467640193, 3842738508408709445398181439, 2009810719756197663340563540778591, 1977945985139308994141721986912910579313, 3448496643225334129810790241492300508936547073
Offset: 0
Some solutions for n=3:
2 0 1 1 0 2 2 0 1 0 1 2 2 1 0 0 1 2 0 1 2
0 1 2 0 2 1 1 2 0 0 1 2 1 2 0 0 1 2 0 1 2
1 0 2 2 0 1 2 0 1 2 0 1 1 0 2 1 0 2 2 0 1
0 2 1 0 1 2 2 0 1 2 0 1 0 1 2 1 2 0 0 1 2
1 2 0 2 0 1 0 1 2 1 2 0 1 0 2 0 1 2 1 2 0
2 1 0 1 0 2 0 2 1 0 2 1 0 1 2 2 0 1 1 2 0
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212860.
-
A212859 := proc(n) sum(z^k/k!^6, k = 0..infinity);
series(%^x, z=0, n+1): n!^6*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212859(n), n=1..11); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[6, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212860
Number of 7 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 127, 275563, 4479288703, 347190069843751, 96426023622482278621, 78785944892341703819175577, 163925632052722656731213188429183, 777880066963402408939826643081996101263, 7717574897043522397037273525233635595811018377
Offset: 0
Some solutions for n=3:
0 1 2 0 1 2 0 2 1 0 1 2 0 2 1 0 2 1 0 2 1
1 2 0 0 2 1 0 2 1 1 0 2 0 2 1 1 0 2 2 1 0
1 0 2 2 1 0 2 0 1 0 1 2 2 0 1 1 0 2 1 2 0
0 2 1 1 0 2 0 2 1 1 0 2 0 1 2 2 0 1 0 1 2
2 0 1 2 1 0 1 0 2 2 1 0 1 2 0 0 1 2 1 2 0
2 1 0 0 1 2 1 0 2 0 1 2 2 0 1 1 0 2 2 1 0
1 2 0 2 1 0 0 1 2 0 2 1 2 1 0 2 0 1 2 0 1
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859.
-
A212860 := proc(n) sum(z^k/k!^7, k = 0..infinity);
series(%^x, z=0, n+1): n!^7*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212860(n), n=1..10); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[7, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212806
Number of n X n matrices in which each row is a permutation of [1..n] and which contain no column rises.
Original entry on oeis.org
1, 3, 163, 271375, 21855093751, 128645361626874561, 78785944892341703819175577, 6795588328283070704898044776213094655, 107414633522643325764587104395687638119674465944431, 392471529081605251407320880492124164530148025908765037878553312273, 407934916447631403509359040563002566177814886353044858592046202746464825839911293037
Offset: 1
For n=2 the three matrices are [12/21], [21/12], [21/21] (but not [12/12]).
From _Petros Hadjicostas_, Aug 26 2019: (Start)
For example, when n = 3, the integer partitions of 3 are 3, 1+2, and 1+1+1, with corresponding (b_1, b_2, b_3) notation (0,0,1), (1,1,0), and (3,0,0). The corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!*2!) = 3, and 3!/(1!*1!*1!) = 6, while the corresponding quantities (b_1 + b_2 + b_3)!/(b_1!*b_2!*b_3!) are 1, 2, and 1. The corresponding exponents of -1 (i.e., n - Sum_{j=1..n} b_j) are 3 - (0+0+1) = 2, 3 - (1+1+0) = 1, and 3 - (3+0+0) = 0.
It follows that a(n) = (-1)^2 * 1 * 1^3 + (-1)^1 * 2 * 3^3 + (-1)^0 * 1 * 6^3 = 163.
(End)
- Alois P. Heinz, Table of n, a(n) for n = 1..30 (first 18 terms from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554). [Their a(5) on p. 250 is wrong; see A212845.]
- Wikipedia, Partition (number theory).
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859,
A212860,
A309951,
A325305.
-
A212806 := proc(n) sum(z^k/k!^n, k=0..infinity);
series(%^x, z=0, n+1): n!^n*coeff(%,z,n); add(abs(coeff(%,x,k)),k=0..n) end:
seq(A212806(n), n=1..11); # Peter Luschny, May 27 2017
-
a[n_] := Module[{s0, s1, s2}, s0 = Sum[z^k/k!^n, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n + 1}] // Normal; s2 = n!^n*Coefficient[s1, z, n]; Sum[Abs[Coefficient[s2, x, k]], {k, 0, n}]]; Array[a, 11] (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
a[n_] := T[n, n];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A337677
a(0) = 1; a(n) = -(n!)^4 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^4.
Original entry on oeis.org
1, -1, 15, -1150, 277760, -164021776, 200693093392, -455136213439776, 1760342776470958080, -10907982472777142353920, 103006437933467240856354816, -1424284967682216438413265543168, 27890228890526992620507064048877568, -752281114397558490715695708227012591616
Offset: 0
-
a[0] = 1; a[n_] := a[n] = -(n!)^4 Sum[a[k]/(k! (n - k))^4, {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]
nmax = 13; CoefficientList[Series[1/(1 + PolyLog[4, x]), {x, 0, nmax}], x] Range[0, nmax]!^4
-
a(n)={n!^4*polcoef(1/(1 + polylog(4,x + O(x*x^n))), n)} \\ Andrew Howroyd, Sep 15 2020
Showing 1-9 of 9 results.
Comments