A212855
T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1
Some solutions for n=3 and k=4:
2 1 3 0 1 3 0 2 3 0 2 1 1 3 0 2 1 3 2 0
2 0 1 3 1 3 0 2 3 1 2 0 1 0 3 2 1 3 0 2
2 3 0 1 3 0 2 1 2 3 1 0 2 0 3 1 3 1 0 2
Table starts:
1 1 1 1 1 1 1
1 3 19 211 3651 90921 3081513
1 7 163 8983 966751 179781181 53090086057
1 15 1135 271375 158408751 191740223841 429966316953825
1 31 7291 7225951 21855093751 164481310134301 2675558106868421881
1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
- Alois P. Heinz, Antidiagonals n = 1..45 (first 20 antidiagonals from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554); see Eqs. (6) on p. 248 and (8) on p. 249 with t=0.
- Yifei Li and Sheila Sundaram, Homology of Segre products of Boolean and subspace lattices, arXiv:2408.08421 [math.CO], 2024. See p. 17.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
-
A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);
series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;
seq(add(abs(k), k=%(j,m)), j=1..len) end:
for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1, -add(
binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))
end:
seq(seq(T(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Apr 26 2020
-
rows = 9;
row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];
T = Table[row[n, rows+1], {n, 1, rows}];
Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
A212850
Number of n X 3 arrays with rows being permutations of 0..2 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 19, 163, 1135, 7291, 45199, 275563, 1666495, 10038331, 60348079, 362442763, 2175719455, 13057505371, 78354598159, 470156286763, 2821023814015, 16926401164411, 101559181827439, 609357415487563, 3656151466494175
Offset: 1
Some solutions for n=3:
1 2 0 2 1 0 0 2 1 1 2 0 1 2 0 2 1 0 1 2 0
2 0 1 2 0 1 2 0 1 2 0 1 0 2 1 2 0 1 1 0 2
0 2 1 0 1 2 2 1 0 2 1 0 2 0 1 0 2 1 0 2 1
A212851
Number of n X 4 arrays with rows being permutations of 0..3 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 211, 8983, 271375, 7225951, 182199871, 4479288703, 108787179775, 2626338801151, 63217691436031, 1519452489242623, 36493601345048575, 876167372044132351, 21031868446675976191, 504811062363654815743, 12116020140998121291775, 290791139166323355287551
Offset: 1
Some solutions for n=3:
..1..3..0..2....3..1..2..0....1..2..0..3....1..2..0..3....1..2..0..3
..2..1..0..3....3..1..0..2....0..1..3..2....3..0..2..1....2..1..3..0
..2..3..1..0....1..2..0..3....3..2..0..1....1..2..0..3....1..3..2..0
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
a[n_] := T[n, 4];
Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212852
Number of n X 5 arrays with rows being permutations of 0..4 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 3651, 966751, 158408751, 21855093751, 2801736968751, 347190069843751, 42328368099218751, 5119530150996093751, 616756797369980468751, 74155772004699902343751, 8907394925520999511718751
Offset: 1
Some solutions for n=3
..0..3..1..2..4....0..2..4..1..3....0..1..4..3..2....0..2..3..4..1
..1..0..4..3..2....1..0..3..2..4....1..3..0..4..2....0..4..3..1..2
..2..4..1..3..0....1..2..0..4..3....3..1..4..0..2....4..0..1..3..2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248 (with t=0).
- Wikipedia, Multinomial coefficients.
- Wikipedia, Partition (number theory).
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 5];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212853
Number of n X 6 arrays with rows being permutations of 0..5 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 90921, 179781181, 191740223841, 164481310134301, 128645361626874561, 96426023622482278621, 70816637331790329140481, 51492108377805402906874141, 37256471170472317193421713601, 26890352949868734582700237312861
Offset: 1
Some solutions for n=3:
0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5
3 0 2 4 5 1 1 3 0 4 5 2 4 0 3 1 2 5 0 1 5 2 3 4
1 2 4 0 3 5 5 0 4 2 3 1 2 1 5 4 3 0 3 1 5 0 4 2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212854,
A212855,
A212856,
A212857,
A309951,
A325305.
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 6];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212854
Number of n X 7 arrays with rows being permutations of 0..6 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 3081513, 53090086057, 429966316953825, 2675558106868421881, 14895038886845467640193, 78785944892341703819175577, 406643086764765052892275303425, 2073826171428339544452057104498041
Offset: 1
Some solutions for n=3
..0..3..4..1..5..2..6....0..3..4..1..5..2..6....0..3..4..1..5..2..6
..1..0..3..5..2..6..4....1..0..3..2..4..5..6....1..0..4..2..5..6..3
..5..2..1..0..6..3..4....4..6..5..1..0..3..2....2..4..0..6..3..5..1
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 7];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A309951
Irregular triangular array, read by rows: T(n,k) is the sum of the products of multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A000041(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11481
Offset: 0
Triangle begins as follows:
[n=0]: 1, 1;
[n=1]: 1, 1;
[n=2]: 1, 3, 2;
[n=3]: 1, 10, 27, 18;
[n=4]: 1, 47, 718, 4416, 10656, 6912;
[n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Since |P_3| = A000041(3) = 3, the recurrence of _R. H. Hardin_ for column n = 3 of array A212855 is T(3,0)*R(m,3) - T(3,1)*R(m-1,3) + T(3,2)*R(m-2,3) - T(3,3)*R(m-3,3) = 0; i.e., R(m,3) - 10*R(m-1,3) + 27*R(m-2,3) - 18*R(m-3,3) = 0 for m >= 4. We have the initial conditions R(m=1,3) = 1, R(m=2,3) = 19, and R(m=3,3) = 163. Thus, R(m,3) = 6^m - 2*3^m + 1 = A212850(m) for m >= 1. See the documentation of array A212855.
- Alois P. Heinz, Rows n = 0..14, flattened
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
Cf.
A000012 (column k=0),
A000041,
A005651 (column k=1),
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212855,
A212856,
A212857,
A212858,
A212859,
A212860.
Rightmost terms in rows give
A309972.
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [map(x->
binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]])
end:
b:= proc(n, m) option remember; `if`(n=0, 1,
expand(b(n-1, m)*(g(m$2)[n]*x+1)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
seq(T(n), n=0..7); # Alois P. Heinz, Aug 25 2019
-
g[n_, i_] := g[n, i] = If[n==0 || i==1, {n!}, Join[Binomial[n, i]*#& /@ g[n - i, Min[n - i, i]], g[n, i - 1]]];
b[n_, m_] := b[n, m] = If[n==0, 1, Expand[b[n-1, m]*(g[m, m][[n]]*x+1)]];
T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 18 2021, after Alois P. Heinz *)
A212857
Number of 4 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 15, 1135, 271375, 158408751, 191740223841, 429966316953825, 1644839120884915215, 10079117505143103766735, 94135092186827772028779265, 1287215725538576868883610346465, 24929029117106417518788960414909025, 664978827664071363541997348802227351425
Offset: 0
Some solutions for n=3:
1 2 0 1 0 2 1 0 2 2 1 0 2 0 1 2 1 0 1 0 2
2 1 0 1 0 2 0 2 1 0 2 1 2 1 0 1 0 2 2 1 0
1 2 0 2 1 0 1 0 2 0 1 2 2 1 0 2 1 0 1 2 0
2 1 0 0 1 2 2 1 0 2 1 0 1 0 2 2 1 0 2 1 0
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212858,
A212859,
A212860,
A336196.
-
A212857 := proc(n) sum(z^k/k!^4, k = 0..infinity);
series(%^x, z=0, n+1): n!^4*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212857(n), n=1..13); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[4, n];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212858
Number of 5 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 31, 7291, 7225951, 21855093751, 164481310134301, 2675558106868421881, 84853928323286139485791, 4849446032811641059203617551, 469353176282647626764795665676281, 73159514984813223626195834388445570381, 17619138865526260905773841471696025142373661
Offset: 0
Some solutions for n=3:
2 0 1 0 1 2 0 2 1 0 2 1 1 2 0 0 2 1 2 0 1
2 0 1 2 1 0 0 1 2 0 2 1 0 1 2 1 2 0 2 0 1
0 1 2 2 0 1 0 2 1 2 1 0 0 1 2 0 1 2 2 1 0
2 0 1 0 1 2 1 2 0 0 2 1 1 0 2 2 1 0 1 0 2
1 2 0 0 2 1 2 1 0 1 2 0 0 1 2 2 1 0 2 1 0
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212859,
A212860,
A336197.
-
A212858 := proc(n) sum(z^k/k!^5, k = 0..infinity);
series(%^x, z=0, n+1): n!^5*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212858(n), n=1..12); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[5, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212859
Number of 6 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 63, 45199, 182199871, 2801736968751, 128645361626874561, 14895038886845467640193, 3842738508408709445398181439, 2009810719756197663340563540778591, 1977945985139308994141721986912910579313, 3448496643225334129810790241492300508936547073
Offset: 0
Some solutions for n=3:
2 0 1 1 0 2 2 0 1 0 1 2 2 1 0 0 1 2 0 1 2
0 1 2 0 2 1 1 2 0 0 1 2 1 2 0 0 1 2 0 1 2
1 0 2 2 0 1 2 0 1 2 0 1 1 0 2 1 0 2 2 0 1
0 2 1 0 1 2 2 0 1 2 0 1 0 1 2 1 2 0 0 1 2
1 2 0 2 0 1 0 1 2 1 2 0 1 0 2 0 1 2 1 2 0
2 1 0 1 0 2 0 2 1 0 2 1 0 1 2 2 0 1 1 2 0
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212860.
-
A212859 := proc(n) sum(z^k/k!^6, k = 0..infinity);
series(%^x, z=0, n+1): n!^6*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212859(n), n=1..11); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[6, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
Showing 1-10 of 18 results.
Comments