A005651
Sum of multinomial coefficients (n_1+n_2+...)!/(n_1!*n_2!*...) where (n_1, n_2, ...) runs over all integer partitions of n.
Original entry on oeis.org
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 98329551, 1191578522, 15543026747, 218668538441, 3285749117475, 52700813279423, 896697825211142, 16160442591627990, 307183340680888755, 6147451460222703502, 129125045333789172825, 2841626597871149750951
Offset: 0
For n=3, say the first three cans in the row contain red, white, and blue paint respectively. The objects can be painted r,r,r or r,r,w or r,w,b and then linearly ordered in 1 + 3 + 6 = 10 ways. - _Geoffrey Critzer_, Jun 08 2009
From _Gus Wiseman_, Sep 03 2018: (Start)
The a(3) = 10 ordered set partitions with weakly decreasing block sizes:
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
{{2,3},{1}}
{{1,2},{3}}
{{1,3},{2}}
{{1,2,3}}
(End)
- Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. E. Hoffman, Updown categories: Generating functions and universal covers, arXiv preprint arXiv:1207.1705 [math.CO], 2012.
- A. Knopfmacher, A. M. Odlyzko, B. Pittel, L. B. Richmond, D. Stark, G. Szekeres, and N. C. Wormald, The Asymptotic Number of Set Partitions with Unequal Block Sizes, The Electronic Journal of Combinatorics, 6 (1999), R2.
- S. Schreiber & N. J. A. Sloane, Correspondence, 1980.
Cf.
A000041,
A000110,
A000258,
A000670,
A007837,
A008277,
A008480,
A036038,
A140585,
A178682,
A212855,
A247551,
A300335,
A318762.
-
A005651b := proc(k) add( d/(d!)^(k/d),d=numtheory[divisors](k)) ; end proc:
A005651 := proc(n) option remember; local k ; if n <= 1 then 1; else (n-1)!*add(A005651b(k)*procname(n-k)/(n-k)!, k=1..n) ; end if; end proc:
seq(A005651(k), k=0..10) ; # R. J. Mathar, Jan 03 2011
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
b(n, i-1) +binomial(n, i)*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 29 2015, Dec 12 2016
-
Table[Total[n!/Map[Function[n, Apply[Times, n! ]], IntegerPartitions[n]]], {n, 0, 20}] (* Geoffrey Critzer, Jun 08 2009 *)
Table[Total[Apply[Multinomial, IntegerPartitions[n], {1}]], {n, 0, 20}] (* Jean-François Alcover and Olivier Gérard, Sep 11 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[t==1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_] := If[n==0, 1, n!*b[n, 0, n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 20 2015, after Alois P. Heinz *)
-
a(m,n):=if n=m then 1 else sum(binomial(n,k)*a(k,n-k),k,m,(n/2))+1;
makelist(a(1,n),n,0,17); /* Vladimir Kruchinin, Sep 06 2014 */
-
a(n)=my(N=n!,s);forpart(x=n,s+=N/prod(i=1,#x,x[i]!));s \\ Charles R Greathouse IV, May 01 2015
-
{ my(n=25); Vec(serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))) } \\ Andrew Howroyd, Dec 20 2017
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
A070289
Number of distinct values of multinomial coefficients ( n / (p1, p2, p3, ...) ) where (p1, p2, p3, ...) runs over all partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 36, 47, 64, 79, 102, 125, 157, 193, 243, 296, 366, 441, 538, 639, 773, 911, 1092, 1294, 1532, 1799, 2131, 2475, 2901, 3369, 3935, 4554, 5292, 6084, 7033, 8087, 9292, 10617, 12198, 13880, 15874, 18039, 20541, 23263, 26414, 29838
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..92
- George E. Andrews, Arnold Knopfmacher, and Burkhard Zimmermann, On the number of distinct multinomial coefficients, Journal of Number Theory 118 (2006), 15-30; arXiv preprint, arXiv:math/0509470 [math.CO], 2005.
- Sergei Viznyuk, C-Program, C-Program, local copy.
-
b:= proc(n,i) option remember;
if n=0 then {1} elif i<1 then {} else {b(n, i-1)[],
seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)} fi
end:
a:= n-> nops(b(n, n)):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 14 2012
-
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Union[Join[b[n, i-1], Flatten[ Table[Function[{x}, x*i!^j] /@ b[n-i*j, i-1], {j, 1, n/i}]]]]]]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
-
def A070289(n):
P = Partitions(n)
M = set(multinomial(list(x)) for x in P)
return len(M)
[A070289(n) for n in range(20)]
# Joerg Arndt, Aug 14 2012
A212855
T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1
Some solutions for n=3 and k=4:
2 1 3 0 1 3 0 2 3 0 2 1 1 3 0 2 1 3 2 0
2 0 1 3 1 3 0 2 3 1 2 0 1 0 3 2 1 3 0 2
2 3 0 1 3 0 2 1 2 3 1 0 2 0 3 1 3 1 0 2
Table starts:
1 1 1 1 1 1 1
1 3 19 211 3651 90921 3081513
1 7 163 8983 966751 179781181 53090086057
1 15 1135 271375 158408751 191740223841 429966316953825
1 31 7291 7225951 21855093751 164481310134301 2675558106868421881
1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
- Alois P. Heinz, Antidiagonals n = 1..45 (first 20 antidiagonals from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554); see Eqs. (6) on p. 248 and (8) on p. 249 with t=0.
- Yifei Li and Sheila Sundaram, Homology of Segre products of Boolean and subspace lattices, arXiv:2408.08421 [math.CO], 2024. See p. 17.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
-
A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);
series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;
seq(add(abs(k), k=%(j,m)), j=1..len) end:
for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1, -add(
binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))
end:
seq(seq(T(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Apr 26 2020
-
rows = 9;
row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];
T = Table[row[n, rows+1], {n, 1, rows}];
Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
A212850
Number of n X 3 arrays with rows being permutations of 0..2 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 19, 163, 1135, 7291, 45199, 275563, 1666495, 10038331, 60348079, 362442763, 2175719455, 13057505371, 78354598159, 470156286763, 2821023814015, 16926401164411, 101559181827439, 609357415487563, 3656151466494175
Offset: 1
Some solutions for n=3:
1 2 0 2 1 0 0 2 1 1 2 0 1 2 0 2 1 0 1 2 0
2 0 1 2 0 1 2 0 1 2 0 1 0 2 1 2 0 1 1 0 2
0 2 1 0 1 2 2 1 0 2 1 0 2 0 1 0 2 1 0 2 1
A212851
Number of n X 4 arrays with rows being permutations of 0..3 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 211, 8983, 271375, 7225951, 182199871, 4479288703, 108787179775, 2626338801151, 63217691436031, 1519452489242623, 36493601345048575, 876167372044132351, 21031868446675976191, 504811062363654815743, 12116020140998121291775, 290791139166323355287551
Offset: 1
Some solutions for n=3:
..1..3..0..2....3..1..2..0....1..2..0..3....1..2..0..3....1..2..0..3
..2..1..0..3....3..1..0..2....0..1..3..2....3..0..2..1....2..1..3..0
..2..3..1..0....1..2..0..3....3..2..0..1....1..2..0..3....1..3..2..0
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
a[n_] := T[n, 4];
Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212852
Number of n X 5 arrays with rows being permutations of 0..4 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 3651, 966751, 158408751, 21855093751, 2801736968751, 347190069843751, 42328368099218751, 5119530150996093751, 616756797369980468751, 74155772004699902343751, 8907394925520999511718751
Offset: 1
Some solutions for n=3
..0..3..1..2..4....0..2..4..1..3....0..1..4..3..2....0..2..3..4..1
..1..0..4..3..2....1..0..3..2..4....1..3..0..4..2....0..4..3..1..2
..2..4..1..3..0....1..2..0..4..3....3..1..4..0..2....4..0..1..3..2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248 (with t=0).
- Wikipedia, Multinomial coefficients.
- Wikipedia, Partition (number theory).
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 5];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212853
Number of n X 6 arrays with rows being permutations of 0..5 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 90921, 179781181, 191740223841, 164481310134301, 128645361626874561, 96426023622482278621, 70816637331790329140481, 51492108377805402906874141, 37256471170472317193421713601, 26890352949868734582700237312861
Offset: 1
Some solutions for n=3:
0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5
3 0 2 4 5 1 1 3 0 4 5 2 4 0 3 1 2 5 0 1 5 2 3 4
1 2 4 0 3 5 5 0 4 2 3 1 2 1 5 4 3 0 3 1 5 0 4 2
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212854,
A212855,
A212856,
A212857,
A309951,
A325305.
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 6];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212854
Number of n X 7 arrays with rows being permutations of 0..6 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 3081513, 53090086057, 429966316953825, 2675558106868421881, 14895038886845467640193, 78785944892341703819175577, 406643086764765052892275303425, 2073826171428339544452057104498041
Offset: 1
Some solutions for n=3
..0..3..4..1..5..2..6....0..3..4..1..5..2..6....0..3..4..1..5..2..6
..1..0..3..5..2..6..4....1..0..3..2..4..5..6....1..0..4..2..5..6..3
..5..2..1..0..6..3..4....4..6..5..1..0..3..2....2..4..0..6..3..5..1
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[n, 7];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A325305
Irregular triangular array, read by rows: T(n,k) is the sum of the products of distinct multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A070289(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11271
Offset: 0
Triangle begins as follows:
[n=0]: 1, 1;
[n=1]: 1, 1;
[n=2]: 1, 3, 2;
[n=3]: 1, 10, 27, 18;
[n=4]: 1, 47, 718, 4416, 10656, 6912;
[n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. They are all distinct. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Consider the list [1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040] of the A070289(7) = 15 - 1 = 14 distinct multinomial coefficients corresponding to the 15 integer partitions of 7. Then T(7,0) = 1, T(7,1) = 11271 (sum of the coefficients), T(7,2) = 46169368 (sum of products of every two different coefficients), T(7,3) = 92088653622 (sum of products of every three different coefficients), and so on. Finally, T(7,14) = 2372695722072874920960000000000 = product of these coefficients.
- Alois P. Heinz, Rows n = 0..15, flattened
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248.
- Wikipedia, Partition (number theory).
Cf.
A000012 (column k=0),
A000041,
A005651,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212855,
A212856,
A309951,
A309972,
A325308 (column k=1).
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [{map(x->
binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]}[]])
end:
b:= proc(n, m) option remember; `if`(n=0, 1,
expand(b(n-1, m)*(g(m$2)[n]*x+1)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
seq(T(n), n=0..7); # Alois P. Heinz, Sep 05 2019
-
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, {n!}, Union[Map[Function[x, Binomial[n, i] x], g[n - i, Min[n - i, i]]], g[n, i - 1]]];
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m] (g[m, m][[n]] x + 1)];
T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, May 06 2020, after Maple *)
A212806
Number of n X n matrices in which each row is a permutation of [1..n] and which contain no column rises.
Original entry on oeis.org
1, 3, 163, 271375, 21855093751, 128645361626874561, 78785944892341703819175577, 6795588328283070704898044776213094655, 107414633522643325764587104395687638119674465944431, 392471529081605251407320880492124164530148025908765037878553312273, 407934916447631403509359040563002566177814886353044858592046202746464825839911293037
Offset: 1
For n=2 the three matrices are [12/21], [21/12], [21/21] (but not [12/12]).
From _Petros Hadjicostas_, Aug 26 2019: (Start)
For example, when n = 3, the integer partitions of 3 are 3, 1+2, and 1+1+1, with corresponding (b_1, b_2, b_3) notation (0,0,1), (1,1,0), and (3,0,0). The corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!*2!) = 3, and 3!/(1!*1!*1!) = 6, while the corresponding quantities (b_1 + b_2 + b_3)!/(b_1!*b_2!*b_3!) are 1, 2, and 1. The corresponding exponents of -1 (i.e., n - Sum_{j=1..n} b_j) are 3 - (0+0+1) = 2, 3 - (1+1+0) = 1, and 3 - (3+0+0) = 0.
It follows that a(n) = (-1)^2 * 1 * 1^3 + (-1)^1 * 2 * 3^3 + (-1)^0 * 1 * 6^3 = 163.
(End)
- Alois P. Heinz, Table of n, a(n) for n = 1..30 (first 18 terms from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554). [Their a(5) on p. 250 is wrong; see A212845.]
- Wikipedia, Partition (number theory).
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859,
A212860,
A309951,
A325305.
-
A212806 := proc(n) sum(z^k/k!^n, k=0..infinity);
series(%^x, z=0, n+1): n!^n*coeff(%,z,n); add(abs(coeff(%,x,k)),k=0..n) end:
seq(A212806(n), n=1..11); # Peter Luschny, May 27 2017
-
a[n_] := Module[{s0, s1, s2}, s0 = Sum[z^k/k!^n, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n + 1}] // Normal; s2 = n!^n*Coefficient[s1, z, n]; Sum[Abs[Coefficient[s2, x, k]], {k, 0, n}]]; Array[a, 11] (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
a[n_] := T[n, n];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
Showing 1-10 of 11 results.
Comments