cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A005651 Sum of multinomial coefficients (n_1+n_2+...)!/(n_1!*n_2!*...) where (n_1, n_2, ...) runs over all integer partitions of n.

Original entry on oeis.org

1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 98329551, 1191578522, 15543026747, 218668538441, 3285749117475, 52700813279423, 896697825211142, 16160442591627990, 307183340680888755, 6147451460222703502, 129125045333789172825, 2841626597871149750951
Offset: 0

Views

Author

Keywords

Comments

This is the total number of hierarchies of n labeled elements arranged on 1 to n levels. A distribution of elements onto levels is "hierarchical" if a level l+1 contains <= elements than level l. Thus for n=4 the arrangement {1,2}:{3}{4} is not allowed. See also A140585. Examples: Let the colon ":" separate two consecutive levels l and l+1. Then n=2 --> 3: {1}{2}, {1}:{2}, {2}:{1}, n=3 --> 10: {1}{2}{3}, {1}{2}:{3}, {3}{1}:{2}, {2}{3}:{1}, {1}:{2}:{3}, {3}:{1}:{2}, {2}:{3}:{1}, {1}:{3}:{2}, {2}:{1}:{3}, {3}:{2}:{1}. - Thomas Wieder, May 17 2008
n identical objects are painted by dipping them into a long row of cans of paint of distinct colors. Begining with the first can and not skipping any cans k, 1<=k<=n, objects are dipped (painted) and not more objects are dipped into any subsequent can than were dipped into the previous can. The painted objects are then linearly ordered. - Geoffrey Critzer, Jun 08 2009
a(n) is the number of partitions of n where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the partition. a(3) = 10: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a. - Alois P. Heinz, Aug 30 2015
Also the number of ordered set partitions of {1,...,n} with weakly decreasing block sizes. - Gus Wiseman, Sep 03 2018
The parity of a(n) is that of A000110(A000120(n)), so a(n) is even if and only if A000120(n) == 2 (mod 3). - Álvar Ibeas, Aug 11 2020

Examples

			For n=3, say the first three cans in the row contain red, white, and blue paint respectively. The objects can be painted r,r,r or r,r,w or r,w,b and then linearly ordered in 1 + 3 + 6 = 10 ways. - _Geoffrey Critzer_, Jun 08 2009
From _Gus Wiseman_, Sep 03 2018: (Start)
The a(3) = 10 ordered set partitions with weakly decreasing block sizes:
  {{1},{2},{3}}
  {{1},{3},{2}}
  {{2},{1},{3}}
  {{2},{3},{1}}
  {{3},{1},{2}}
  {{3},{2},{1}}
  {{2,3},{1}}
  {{1,2},{3}}
  {{1,3},{2}}
  {{1,2,3}}
(End)
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of: A226873, A261719, A309973.
Row sums of: A226874, A262071, A327803.
Column k=1 of A309951.
Column k=0 of A327801.

Programs

  • Maple
    A005651b := proc(k) add( d/(d!)^(k/d),d=numtheory[divisors](k)) ; end proc:
    A005651 := proc(n) option remember; local k ; if n <= 1 then 1; else (n-1)!*add(A005651b(k)*procname(n-k)/(n-k)!, k=1..n) ; end if; end proc:
    seq(A005651(k), k=0..10) ; # R. J. Mathar, Jan 03 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
          b(n, i-1) +binomial(n, i)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015, Dec 12 2016
  • Mathematica
    Table[Total[n!/Map[Function[n, Apply[Times, n! ]], IntegerPartitions[n]]], {n, 0, 20}] (* Geoffrey Critzer, Jun 08 2009 *)
    Table[Total[Apply[Multinomial, IntegerPartitions[n], {1}]], {n, 0, 20}] (* Jean-François Alcover and Olivier Gérard, Sep 11 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[t==1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_] := If[n==0, 1, n!*b[n, 0, n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 20 2015, after Alois P. Heinz *)
  • Maxima
    a(m,n):=if n=m then 1 else sum(binomial(n,k)*a(k,n-k),k,m,(n/2))+1;
    makelist(a(1,n),n,0,17); /* Vladimir Kruchinin, Sep 06 2014 */
    
  • PARI
    a(n)=my(N=n!,s);forpart(x=n,s+=N/prod(i=1,#x,x[i]!));s \\ Charles R Greathouse IV, May 01 2015
    
  • PARI
    { my(n=25); Vec(serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))) } \\ Andrew Howroyd, Dec 20 2017

Formula

E.g.f.: 1 / Product (1 - x^k/k!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(-k/d). - Vladeta Jovovic, Oct 14 2002
a(n) ~ c * n!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264... . - Vaclav Kotesovec, May 09 2014
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2 , binomial(n,k)*S(n-k,k))+1, S(n,n)=1, S(n,m)=0 for nVladimir Kruchinin, Sep 06 2014
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A070289 Number of distinct values of multinomial coefficients ( n / (p1, p2, p3, ...) ) where (p1, p2, p3, ...) runs over all partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 36, 47, 64, 79, 102, 125, 157, 193, 243, 296, 366, 441, 538, 639, 773, 911, 1092, 1294, 1532, 1799, 2131, 2475, 2901, 3369, 3935, 4554, 5292, 6084, 7033, 8087, 9292, 10617, 12198, 13880, 15874, 18039, 20541, 23263, 26414, 29838
Offset: 0

Views

Author

Naohiro Nomoto, May 12 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember;
          if n=0 then {1} elif i<1 then {} else {b(n, i-1)[],
             seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)} fi
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 14 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Union[Join[b[n, i-1], Flatten[ Table[Function[{x}, x*i!^j] /@ b[n-i*j, i-1], {j, 1, n/i}]]]]]]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
  • Sage
    def A070289(n):
        P = Partitions(n)
        M = set(multinomial(list(x)) for x in P)
        return len(M)
    [A070289(n) for n in range(20)]
    # Joerg Arndt, Aug 14 2012

Formula

a(n) = A215520(n,n) = A215521(2*n,n). - Alois P. Heinz, Nov 08 2012

Extensions

Terms a(n) for n >= 45 corrected by Joerg Arndt and Alois P. Heinz, Aug 14 2012

A212855 T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 19, 7, 1, 1, 211, 163, 15, 1, 1, 3651, 8983, 1135, 31, 1, 1, 90921, 966751, 271375, 7291, 63, 1, 1, 3081513, 179781181, 158408751, 7225951, 45199, 127, 1, 1, 136407699, 53090086057, 191740223841, 21855093751, 182199871, 275563, 255, 1
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

In other words, there are no "column rises", where a "column rise" means a pair of adjacent columns where each entry in the left column is strictly less than the adjacent entry in the right column.
This is R(n,k,0) in [Abramson-Promislow].
From Petros Hadjicostas, Sep 09 2019: (Start)
As stated above, in the notation of Abramson and Promislow (1978), we have T(n,k) = R(n, k, t=0).
Let P_k be the set of all lists a = (a_1, a_2, ..., a_k) of integers a_i >= 0, i = 1, ..., k, such that 1*a_1 + 2*a_2 + ... + k*a_k = k; i.e., P_k is the set all integer partitions of k. Then |P_k| = A000041(k).
From Eq. (6), p. 248, in Abramson and Promislow (1978), with t=0, we get T(n,k) = Sum_{a in P_k} (-1)^(k - Sum_{j=1..k} a_j) * (a_1 + a_2 + ... + a_k)!/(a_1! * a_2! * ... * a_k!) * (k! / ((1!)^a_1 * (2!)^a_2 * ... * (k!)^a_k))^n.
The integer partitions of k = 1..10 are listed on pp. 831-832 of Abramowitz and Stegun (1964). We see that, for k = 1..6, the corresponding multinomial coefficients k! / ((1!)^a_1 * (2!)^a_2 * ... * (k!)^a_k) are all distinct; that is, A070289(k) = A000041(k) and A309951(k,s) = A325305(k,s) for s = 0..A000041(k). For 7 <= k <= 10, this is not true anymore; i.e., A070289(k) < A000041(k) for 7 <= k <= 10 (and we conjecture that this is the case for all k >= 7).
From the theory of difference equations, we see that Abramson and Promislow's Eq. (6) on p. 248 (with t=0) implies that Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1. For k = 1..5, these recurrences give R. H. Hardin's empirical recurrences shown in the Formula section below.
We also have Sum_{s = 0..A000041(k)} (-1)^s * A309951(k,s) * T(n-s,k) = 0 for n >= A000041(k) + 1, but for k >= 7, the recurrence we get (for column k) may not necessarily be minimal.
To derive the recurrence for row n, let y=0 in Eq. (8), p. 249, of Abramson and Promislow (1978). We get 1 + Sum_{k >= 1} T(n,k)*x^k/(k!)^n = 1/f_n(-x), where f_n(x) = Sum_{i >= 0} (x^i/(i!)^n). Matching coefficients, we get Sum_{s = 1..k} T(n,s) * (-1)^(s-1) * binomial(k,s)^n = 1, from which the recurrence in the Formula section follows.
(End)

Examples

			Some solutions for n=3 and k=4:
  2 1 3 0    1 3 0 2    3 0 2 1    1 3 0 2    1 3 2 0
  2 0 1 3    1 3 0 2    3 1 2 0    1 0 3 2    1 3 0 2
  2 3 0 1    3 0 2 1    2 3 1 0    2 0 3 1    3 1 0 2
Table starts:
  1  1     1         1             1                  1                       1
  1  3    19       211          3651              90921                 3081513
  1  7   163      8983        966751          179781181             53090086057
  1 15  1135    271375     158408751       191740223841         429966316953825
  1 31  7291   7225951   21855093751    164481310134301     2675558106868421881
  1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193
		

Crossrefs

Cf. A000012 (row 1), A000275 (row 2), A212856 (row 3), A212857 (row 4), A212858 (row 5), A212859 (row 6), A212860 (row 7).
Cf. A000012 (column 1), A000225 (column 2), A212850 (column 3), A212851 (column 4), A212852 (column 5), A212853 (column 6), A212854 (column 7).
Cf. A000041, A070289 (order of minimal recurrence for column k), A192721, A212806 (main diagonal), A309951, A325305.

Programs

  • Maple
    A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);
    series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;
    seq(add(abs(k), k=%(j,m)), j=1..len) end:
    for n from 1 to 6 do A212855_row(n,7) od; # Peter Luschny, May 26 2017
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k=0, 1, -add(
          binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))
        end:
    seq(seq(T(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 26 2020
  • Mathematica
    rows = 9;
    row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];
    T = Table[row[n, rows+1], {n, 1, rows}];
    Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)

Formula

Empirical recurrence for column k:
k=1: a(n) = 1*a(n-1).
k=2: a(n) = 3*a(n-1) - 2*a(n-2).
k=3: a(n) = 10*a(n-1) - 27*a(n-2) + 18*a(n-3).
k=4: a(n) = 47*a(n-1) - 718*a(n-2) + 4416*a(n-3) - 10656*a(n-4) + 6912*a(n-5).
k=5: a(n) = 246*a(n-1) - 20545*a(n-2) + 751800*a(n-3) - 12911500*a(n-4) + 100380000*a(n-5) - 304200000*a(n-6) + 216000000*a(n-7).
[All the "empirical" recurrences above are correct. See the comments above.]
From Benoit Jubin, May 29 2012: (Start)
T(n,1) = T(1,n) = 1.
T(n,2) = 2^n - 1 since the only n X 2 matrix with rows permutations of {0,1} which has a column rise is the one where all rows are [0,1].
(k!)^n*(1 - (k-1)/2^n) <= T(n,k) <= (k!)^n (the first inequality is (11) in the Abramson-Promislow reference, the second is trivial). (End)
For r >= 1, A(n, r) = Sum_{k=0..n} |[x^k] n!^r [z^n] S(r, z)^x| where S(r, z) = Sum_{k>=0} z^k/k!^r. - Peter Luschny, Feb 27 2018
From Petros Hadjicostas, Sep 09 2019: (Start)
Recurrence for column k: Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1.
Recurrence for row n: T(n,k) = (-1)^(k-1) + Sum_{s = 1..k-1} T(n,s) * (-1)^(k-s-1) * binomial(k,s)^n for k >= 1.
(End)
Sum_{k>=1} T(n,k)*z^k/(k!)^n = 1/E_n(-z) -1 where E_n(z) = Sum_{k>=0} z^k/(k!)^n. - Geoffrey Critzer, Apr 28 2023

A212850 Number of n X 3 arrays with rows being permutations of 0..2 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 19, 163, 1135, 7291, 45199, 275563, 1666495, 10038331, 60348079, 362442763, 2175719455, 13057505371, 78354598159, 470156286763, 2821023814015, 16926401164411, 101559181827439, 609357415487563, 3656151466494175
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

From Petros Hadjicostas, Aug 25 2019: (Start)
Both formulas below follow from the theory in the documentation of array A309951. We have Sum_{s = 0..A000041(3)} (-1)^s * A309951(3,s) * a(n-s) = 0, i.e., a(n) - 10*a(n-1) - 27*a(n-2) + 18*a(n-3) = 0 for n >= 4. This is a consequence of Eq. (6) on p. 248 of Abramson and Promislow (1978), where we let t=0 in the equation.
In the explicit formula by Vaclav Kotesovec below, a(n) = 6^n - 2*3^n + 1^n, the numbers 1, 3, 6 (that are raised to the n-th power) are the multinomial coefficients of the A000041(3) = 3 integer partitions of 3: 1 = 3!/3!, 3 = 3!/(1!2!), 6 = 3!/(1!1!1!).
(End)

Examples

			Some solutions for n=3:
  1 2 0   2 1 0   0 2 1   1 2 0   1 2 0   2 1 0   1 2 0
  2 0 1   2 0 1   2 0 1   2 0 1   0 2 1   2 0 1   1 0 2
  0 2 1   0 1 2   2 1 0   2 1 0   2 0 1   0 2 1   0 2 1
		

Crossrefs

Formula

Empirical: a(n) = 10*a(n-1) - 27*a(n-2) + 18*a(n-3).
Explicit formula: a(n) = 6^n - 2*3^n + 1. - Vaclav Kotesovec, May 31 2012

A212851 Number of n X 4 arrays with rows being permutations of 0..3 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 211, 8983, 271375, 7225951, 182199871, 4479288703, 108787179775, 2626338801151, 63217691436031, 1519452489242623, 36493601345048575, 876167372044132351, 21031868446675976191, 504811062363654815743, 12116020140998121291775, 290791139166323355287551
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

Column 4 of A212855.
From Petros Hadjicostas, Aug 25 2019: (Start)
All formulas below follow from the theory in the documentation of array A309951.
We have Sum_{s = 0..A000041(4)} (-1)^s * A309951(4,s) * a(n-s) = 0, i.e., a(n) - 47*a(n-1) + 718*a(n-2) - 4416*a(n-3) + 10656*a(n-4) - 6912*a(n-5) = 0 for n >= 6. This is a consequence of Eq. (6) on p. 248 of Abramson and Promislow (1978).
Note that in R. J. Mathar's formula a(n) = 24^n + 6^n - 3*12^n + 2*4^n - 1^n, the numbers 1, 4, 12, 6, and 24 (that are raised to the n-th power) are the multinomial coefficients of the A000041(4) = 5 integer partitions of 4: 4!/4! = 1, 4!/(1!3!) = 4, 12 = 4!/(1!1!2!), 6 = 4!/(2!2!), 24 = 4!/(1!1!1!1!).
Note also that these numbers appear also in the denominator of the Colin Barker's g.f.: (1 - x)*(1 - 4*x)*(1 - 6*x)*(1 - 12*x)*(1 - 24*x) = 1 - 47*x + 718*x^2 - 4416*x^3 + 10656*x^4 - 6912*x^5. (End)

Examples

			Some solutions for n=3:
..1..3..0..2....3..1..2..0....1..2..0..3....1..2..0..3....1..2..0..3
..2..1..0..3....3..1..0..2....0..1..3..2....3..0..2..1....2..1..3..0
..2..3..1..0....1..2..0..3....3..2..0..1....1..2..0..3....1..3..2..0
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
    a[n_] := T[n, 4];
    Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)

Formula

Empirical: a(n) = 47*a(n-1) - 718*a(n-2) + 4416*a(n-3) - 10656*a(n-4) + 6912*a(n-5).
Empirical: a(n) = 24^n + 6^n - 3*12^n + 2*4^n - 1. R. J. Mathar, Jun 25 2012
Empirical g.f.: x*(1 + 164*x - 216*x^2 - 3744*x^3) / ((1 - x)*(1 - 4*x)*(1 - 6*x)*(1 - 12*x)*(1 - 24*x)). - Colin Barker, Jul 21 2018

A212852 Number of n X 5 arrays with rows being permutations of 0..4 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 3651, 966751, 158408751, 21855093751, 2801736968751, 347190069843751, 42328368099218751, 5119530150996093751, 616756797369980468751, 74155772004699902343751, 8907394925520999511718751
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

Column 5 of A212855.
From Petros Hadjicostas, Sep 06 2019: (Start)
Let P_5 be the set of all lists b = (b_1, b_2, b_3, b_4, b_5) of integers b_i >= 0, i = 1, ..., 5, such that 1*b_1 + 2*b_2 + 3*b_3 + 4*b_4 + 5*b_5 = 5; i.e., P_5 is the set all integer partitions of 5. Then |P_5| = A000041(5) = 7.
From Eq. (6), p. 248, in Abramson and Promislow (1978), we get a(n) = A212855(n,5) = Sum_{b in P_5} (-1)^(5 - Sum_{j=1..5} b_j) * (b_1 + b_2 + b_3 + b_4 + b_5)!/(b_1! * b_2! * b_3! * b_4! * b_5!) * (5! / ((1!)^b_1 * (2!)^b_2 * (3!)^b_3 * (4!)^b_4 * (5!)^b_5))^n.
The integer partitions of 5 are listed on p. 831 of Abramowitz and Stegun (1964). We see that the corresponding multinomial coefficients 5! / ((1!)^b_1 * (2!)^b_2 * (3!)^b_3 * (4!)^b_4 * (5!)^b_5) are all distinct; that is, A070289(5) = A000041(5) = 7.
Using the integer partitions of 5 and the above formula for a(n), we may derive R. J. Mathar's formula below.
(End)

Examples

			Some solutions for n=3
..0..3..1..2..4....0..2..4..1..3....0..1..4..3..2....0..2..3..4..1
..1..0..4..3..2....1..0..3..2..4....1..3..0..4..2....0..4..3..1..2
..2..4..1..3..0....1..2..0..4..3....3..1..4..0..2....4..0..1..3..2
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
    a[n_] := T[n, 5];
    Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)

Formula

Empirical: a(n) = 246*a(n-1) -20545*a(n-2) +751800*a(n-3) -12911500*a(n-4) +100380000*a(n-5) -304200000*a(n-6) +216000000*a(n-7).
Empirical: a(n) = -2*5^n + 3*20^n - 4*60^n + 120^n + 3*30^n - 2*10^n + 1. R. J. Mathar, Jun 25 2012
Sum_{s = 0..7} (-1)^s * A325305(5, s) * a(n-s) = 0 for n >= 8. (This is the same as R. H. Hardin's recurrence above, and it follows from Eq. (6) (with t=0), p. 248, in Abramson and Promislow (1978).) - Petros Hadjicostas, Sep 06 2019

A212853 Number of n X 6 arrays with rows being permutations of 0..5 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 90921, 179781181, 191740223841, 164481310134301, 128645361626874561, 96426023622482278621, 70816637331790329140481, 51492108377805402906874141, 37256471170472317193421713601, 26890352949868734582700237312861
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

Column 6 of A212855.
From Petros Hadjicostas, Sep 08 2019: (Start)
Let P_6 be the set of all lists b = (b_1, b_2, b_3, b_4, b_5, b_6) of integers b_i >= 0, i = 1, ..., 6, such that 1*b_1 + 2*b_2 + 3*b_3 + 4*b_4 + 5*b_5 + 6*b_6 = 6; i.e., P_6 is the set all integer partitions of 6. Then |P_6| = A000041(6) = 11.
From Eq. (6), p. 248, in Abramson and Promislow (1978), with t=0, we get a(n) = A212855(n,6) = Sum_{b in P_6} (-1)^(6-Sum_{j=1..6} b_j) * (b_1 + b_2 + b_3 + b_4 + b_5 + b_6)!/(b_1! * b_2! * b_3! * b_4! * b_5! * b_6!) * (6! / ((1!)^b_1 * (2!)^b_2 * (3!)^b_3 * (4!)^b_4 * (5!)^b_5 * (6!)^b_6))^n.
The integer partitions of 6 are listed on p. 831 of Abramowitz and Stegun (1964). We see that the corresponding multinomial coefficients 6! / ((1!)^b_1 * (2!)^b_2 * (3!)^b_3 * (4!)^b_4 * (5!)^b_5 * (6!)^b_6) are all distinct; that is, A070289(6) = A000041(6) = 11 and A309951(6,s) = A325305(6,s) for s = 0..11. (Compare with the comments for A212854.)
Using the information about partitions of 6 in Eq. (6) (with t=0), p. 248, of Abramson and Promislow (1978), we may derive the explicit equation for a(n) shown below.
Using standard results from the theory of difference equations (since the solution is known explicitly), we may derive R. H. Hardin's empirical recurrence. The recurrence is equivalent to Sum_{s = 0..11} (-1)^s * A325305(6,s) * a(n-s) = 0 for n >= 12.
(End)

Examples

			Some solutions for n=3:
  0 3 1 4 2 5   0 3 1 4 2 5   0 3 1 4 2 5   0 3 1 4 2 5
  3 0 2 4 5 1   1 3 0 4 5 2   4 0 3 1 2 5   0 1 5 2 3 4
  1 2 4 0 3 5   5 0 4 2 3 1   2 1 5 4 3 0   3 1 5 0 4 2
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
    a[n_] := T[n, 6];
    Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)

Formula

Empirical: a(n) = 1602*a(n-1) - 929171*a(n-2) + 260888070*a(n-3) - 39883405500*a(n-4) + 3492052425000*a(n-5) - 177328940580000*a(n-6) + 5153150631600000*a(n-7) - 82577533320000000*a(n-8) + 669410956800000000*a(n-9) - 2224399449600000000*a(n-10) + 1632586752000000000*a(n-11) for n >= 12. [It is correct; see the comments above.]
a(n) = -1 + 2*6^n + 2*15^n + 20^n - 3*30^n - 6*60^n - 90^n + 4*120^n + 6*180^n - 5*360^n + 720^n for n >= 1. - Petros Hadjicostas, Sep 08 2019

A212854 Number of n X 7 arrays with rows being permutations of 0..6 and no column j greater than column j-1 in all rows.

Original entry on oeis.org

1, 3081513, 53090086057, 429966316953825, 2675558106868421881, 14895038886845467640193, 78785944892341703819175577, 406643086764765052892275303425, 2073826171428339544452057104498041
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

From Petros Hadjicostas, Aug 25 2019: (Start)
We have a(m) = R(m,n=7,t=0) = A212855(m,7) for m >= 1, where R(m,n,t) = LHS of Eq. (6) of Abramson and Promislow (1978, p. 248).
Let P_7 be the set of all lists b = (b_1, b_2,..., b_7) of integers b_i >= 0, i = 1, ..., 7 such that 1*b_1 + 2*b_2 + ... + 7*b_7 = 7; i.e., P_7 is the set all integer partitions of 7. Then |P_7| = A000041(7) = 15.
We have a(m) = A212855(m,7) = Sum_{b in P_7} (-1)^(7 - Sum_{j=1..7} b_j) * (b_1 + b_2 + ... + b_7)!/(b_1! * b_2! * ... * b_7!) * (7! / ((1!)^b_1 * (2!)^b_2 * ... * (7!)^b_7))^m.
The integer partitions of 7 are listed on p. 831 of Abramowitz and Stegun (1964). We see that, when (b_1, b_2, ..., b_7) = (0, 2, 1, 0, 0, 0, 0) or (3, 0, 0, 1, 0, 0, 0) (i.e., we have the partitions 2+2+3 and 1+1+1+4), the corresponding multinomial coefficients are 210 = 7!/(2!2!3!) = 7!/(1!1!1!4!), so the number of terms in the expression for a(m) is |P_7| - 1 = 15 - 1 = 14 (see below in the Formula section).
Let M_7 := [1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040] be the A070289(7) = 15 - 1 = 14 distinct multinomial coefficients corresponding to the 15 integer partitions of 7 in P_7. The characteristic equation of the recurrence for a(m) is f(x) := Product_{r in M_7} (x-r) = Sum_{i = 0..14} (-1)^{14-i} * c_i * x^i. It turns out that c_{14} = 1, c_{13} = 11271, c_{12} = 46169368, c_{11} = 92088653622, and so on (see R. H. Hardin's recurrence below), and c_0 = 2372695722072874920960000000000 = product of elements in M_7.
It follows that a(m) satisfies the recurrence Sum_{i = 0..14} (-1)^{14-i} * c_i * a(m-i) = 0, which is equivalent to R. H. Hardin's empirical recurrence below.
If we count the multinomial coefficient 210 twice in the characteristic equation (since it corresponds to two different integer partitions of 7) then we get (x-210)*f(x) = Sum_{i = 0..15} (-1)^{15-i} * d_i * x^i, where (d_0, d_1, ..., d_15) is row k = 7 in irregular triangular array A309951. We have d_{15} = 1, d_{14} = 11481, ..., d_0 = 498266101635303733401600000000000 (see Alois P. Heinz's b-file for A309951 with entries 37 to 52). Note that d_0 = 210 * c_0.
We then have Sum_{s = 0..15} (-1)^s * A309951(7, s) * a(m-s) = 0 for m >= 16. The latter recurrence is of order 15, and it is not minimal (as opposed to the one below by R. H. Hardin, which is of order 14 and minimal).
(End)

Examples

			Some solutions for n=3
..0..3..4..1..5..2..6....0..3..4..1..5..2..6....0..3..4..1..5..2..6
..1..0..3..5..2..6..4....1..0..3..2..4..5..6....1..0..4..2..5..6..3
..5..2..1..0..6..3..4....4..6..5..1..0..3..2....2..4..0..6..3..5..1
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
    a[n_] := T[n, 7];
    Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)

Formula

Empirical: a(n) = 11271*a(n-1) -46169368*a(n-2) +92088653622*a(n-3) -100896701243149*a(n-4) +64220064122517975*a(n-5) -24283767237355832850*a(n-6) +5479502670227877007500*a(n-7) -734487423806273666445000*a(n-8) +57519812656973505919500000*a(n-9) -2547756421856270328438000000*a(n-10) +60760702040873540340600000000*a(n-11) -700874827794270417254400000000*a(n-12) +3015300813467611878720000000000*a(n-13) -2372695722072874920960000000000*a(n-14). [It is correct; see the comments above and one of the formulas below.]
a(n) = 1 - 2*7^n - 2*21^n - 2*35^n + 3*42^n + 6*105^n + 3*140^n - 210^n - 12*420^n - 4*630^n + 5*840^n + 10*1260^n - 6*2520^n + 5040^n. - Petros Hadjicostas, Aug 25 2019
Sum_{s = 0..14} (-1)^s * A325305(7, s) * a(n-s) = 0 for n >= 15. (This is the same as R. H. Hardin's recurrence above, and it follows from Eq. (6), p. 248, in Abramson and Promislow (1978) with t=0.) - Petros Hadjicostas, Sep 06 2019

A325305 Irregular triangular array, read by rows: T(n,k) is the sum of the products of distinct multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A070289(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11271
Offset: 0

Views

Author

Petros Hadjicostas, Sep 05 2019

Keywords

Comments

This array was inspired by R. H. Hardin's recurrences for the columns of array A212855. Row n has length A070289(n) + 1.
This array differs from array A309951 starting at row n = 7. Array A309951 calculates a similar sum of products of multinomial coefficients, but the multinomial coefficients do not have to be distinct. Row n of array A309951 has length A000041(n) + 1, i.e., one more than the number of partitions of n.
Let P_n be the set of all lists a = (a_1, a_2,..., a_n) of integers a_i >= 0, i = 1,..., n such that 1*a_1 + 2*a_2 + ... + n*a_n = n; i.e., P_n is the set all integer partitions of n. (We use a different notation for partitions than the one in the name of T(n,k).) Then |P_n| = A000041(n) for n >= 0.
For n = 1..6, all the multinomial coefficients n!/((1!)^a_1 * (2!)^a_2 * ... * (n!)^a^n) corresponding to lists (a_1,...,a_n) in P_n are distinct; that is, A000041(n) = A070289(n) for n = 1..6.
For n = 7, the partitions (a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (0, 2, 1, 0, 0, 0, 0) (i.e., 2 + 2 + 3) and (a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (3, 0, 0, 1, 0, 0, 0) (i.e., 1 + 1 + 1 + 4) give the same multinomial coefficient: 210 = 7!/(2!2!3!) = 7!/(1!1!1!4!). Hence, A000041(7) > A070289(7).
Looking at the multinomial coefficients of the integer partitions of n = 8, 9, 10 on pp. 831-832 of Abramowitz and Stegun (1964), we see that, even in these cases, we have A000041(n) > A070289(n).

Examples

			Triangle begins as follows:
  [n=0]: 1,   1;
  [n=1]: 1,   1;
  [n=2]: 1,   3,     2;
  [n=3]: 1,  10,    27,     18;
  [n=4]: 1,  47,   718,   4416,    10656,      6912;
  [n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
  ...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. They are all distinct. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Consider the list [1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040] of the A070289(7) = 15 - 1 = 14 distinct multinomial coefficients corresponding to the 15 integer partitions of 7. Then  T(7,0) = 1, T(7,1) = 11271 (sum of the coefficients), T(7,2) = 46169368 (sum of products of every two different coefficients), T(7,3) = 92088653622 (sum of products of every three different coefficients), and so on. Finally, T(7,14) = 2372695722072874920960000000000 = product of these coefficients.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [{map(x->
          binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]}[]])
        end:
    b:= proc(n, m) option remember; `if`(n=0, 1,
          expand(b(n-1, m)*(g(m$2)[n]*x+1)))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
    seq(T(n), n=0..7);  # Alois P. Heinz, Sep 05 2019
  • Mathematica
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, {n!}, Union[Map[Function[x, Binomial[n, i] x], g[n - i, Min[n - i, i]]], g[n, i - 1]]];
    b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m] (g[m, m][[n]] x + 1)];
    T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
    T /@ Range[0, 7] // Flatten (* Jean-François Alcover, May 06 2020, after Maple *)

Formula

Sum_{k=0..A070289(n)} (-1)^k * T(n,k) = 0.

A212806 Number of n X n matrices in which each row is a permutation of [1..n] and which contain no column rises.

Original entry on oeis.org

1, 3, 163, 271375, 21855093751, 128645361626874561, 78785944892341703819175577, 6795588328283070704898044776213094655, 107414633522643325764587104395687638119674465944431, 392471529081605251407320880492124164530148025908765037878553312273, 407934916447631403509359040563002566177814886353044858592046202746464825839911293037
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Comments

A column rise in a matrix M = (m_{i,j}) is a value of j such that m_{i,j} < m_{i,j+1} for all i = 1..n.
From Petros Hadjicostas, Aug 26 2019: (Start)
Let R(m,n) := R(m,n,t=0) = A212855(m,n) for m,n >= 1, where R(m,n,t) = LHS of Eq. (6) of Abramson and Promislow (1978, p. 248).
Let P_n be the set of all lists b = (b_1, b_2,..., b_n) of integers b_i >= 0, i = 1,..., n, such that 1*b_1 + 2*b_2 + ... + n*b_n = n; i.e., P_n is the set all integer partitions of n. Then |P_n| = A000041(n) for n >= 0.
We have a(n) = R(n,n) = A212855(n,n) = Sum_{b in P_n} (-1)^(n - Sum_{j=1..n} b_j) * (b_1 + b_2 + ... + b_n)!/(b_1! * b_2! * ... * b_n!) * (n! / ((1!)^b_1 * (2!)^b_2 * ... * (n!)^b_n)^n.
(End)

Examples

			For n=2 the three matrices are [12/21], [21/12], [21/21] (but not [12/12]).
From _Petros Hadjicostas_, Aug 26 2019: (Start)
For example, when n = 3, the integer partitions of 3 are 3, 1+2, and 1+1+1, with corresponding (b_1, b_2, b_3) notation (0,0,1), (1,1,0), and (3,0,0). The corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!*2!) = 3, and 3!/(1!*1!*1!) = 6, while the corresponding quantities (b_1 + b_2 + b_3)!/(b_1!*b_2!*b_3!) are 1, 2, and 1. The corresponding exponents of -1 (i.e., n - Sum_{j=1..n} b_j) are 3 - (0+0+1) = 2, 3 - (1+1+0) = 1, and 3 - (3+0+0) = 0.
It follows that a(n) = (-1)^2 * 1 * 1^3 + (-1)^1 * 2 * 3^3 + (-1)^0 * 1 * 6^3 = 163.
(End)
		

Crossrefs

Programs

  • Maple
    A212806 := proc(n) sum(z^k/k!^n, k=0..infinity);
    series(%^x, z=0, n+1): n!^n*coeff(%,z,n); add(abs(coeff(%,x,k)),k=0..n) end:
    seq(A212806(n), n=1..11); # Peter Luschny, May 27 2017
  • Mathematica
    a[n_] := Module[{s0, s1, s2}, s0 = Sum[z^k/k!^n, {k, 0, n}]; s1 =  Series[s0^x, {z, 0, n + 1}] // Normal; s2 = n!^n*Coefficient[s1, z, n]; Sum[Abs[Coefficient[s2, x, k]], {k, 0, n}]]; Array[a, 11] (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
    T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
    a[n_] := T[n, n];
    Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)

Formula

Abramson and Promislow give a g.f. for R(m,n,t), the number of m X n matrices in which each row is a permutation of [1..n] and which contain exactly t column rises:
1 + Sum_{n>=1} Sum_{t=0..n-1} R(m,n,t) y^t x^n/(n!)^m = (y-1)/(y-f(x(y-1))) where f(x) = Sum_{i>=0} x^i/(i!)^m.

Extensions

Corrected by R. H. Hardin, May 28 2012
Showing 1-10 of 11 results. Next