cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A070289 Number of distinct values of multinomial coefficients ( n / (p1, p2, p3, ...) ) where (p1, p2, p3, ...) runs over all partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 36, 47, 64, 79, 102, 125, 157, 193, 243, 296, 366, 441, 538, 639, 773, 911, 1092, 1294, 1532, 1799, 2131, 2475, 2901, 3369, 3935, 4554, 5292, 6084, 7033, 8087, 9292, 10617, 12198, 13880, 15874, 18039, 20541, 23263, 26414, 29838
Offset: 0

Views

Author

Naohiro Nomoto, May 12 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember;
          if n=0 then {1} elif i<1 then {} else {b(n, i-1)[],
             seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)} fi
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 14 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Union[Join[b[n, i-1], Flatten[ Table[Function[{x}, x*i!^j] /@ b[n-i*j, i-1], {j, 1, n/i}]]]]]]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
  • Sage
    def A070289(n):
        P = Partitions(n)
        M = set(multinomial(list(x)) for x in P)
        return len(M)
    [A070289(n) for n in range(20)]
    # Joerg Arndt, Aug 14 2012

Formula

a(n) = A215520(n,n) = A215521(2*n,n). - Alois P. Heinz, Nov 08 2012

Extensions

Terms a(n) for n >= 45 corrected by Joerg Arndt and Alois P. Heinz, Aug 14 2012

A376663 Largest frequency of n in the multiset of multinomial coefficients k!/(x_1! * ... * x_j!) with 1 <= x_1 <= ... <= x_j for a fixed k = x_1 + ... + x_j, i.e., maximum number of times that n appears in a row of A036038.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Pontus von Brömssen, Oct 02 2024

Keywords

Examples

			56 appears twice in row 8 of A036038 (and never more than twice in the same row): 56 = 8!/(1!*1!*6!) = 8!/(3!*5!). Hence, a(56) = 2.
		

Crossrefs

Cf. A036038, A376369, A376661, A376664, A376665 (records), A376666 (indices of records), A376667.

A376662 The smallest of the most common numbers among the multinomial coefficients n!/(x_1! * ... * x_k!) for all partitions (x_1, ..., x_k) of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 210, 56, 504, 1260, 9240, 166320, 360360, 5045040, 75675600, 1210809600, 4084080, 73513440, 698377680, 13967553600, 146659312800, 1075501627200, 37104806138400, 296838449107200, 7420961227680000, 96472495959840000, 2604757390915680000
Offset: 0

Views

Author

Pontus von Brömssen, Oct 02 2024

Keywords

Comments

a(n) is the smallest number that appears A376661(n) times in row n of A036038 (for n >= 1) or A078760.

Examples

			For n = 8, the only numbers that appear more than once in row 8 of A036038 are 56 and 1680, which both appear twice. Since 56 < 1680, a(8) = 56.
		

Crossrefs

A376821 Number of irreducible pairs of partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 3, 3, 6, 7, 8, 4, 6, 7, 12, 17, 23, 23, 31, 38, 36, 70, 71, 101, 127, 118, 145, 191, 209, 261, 309, 396, 462, 512, 652, 769, 878, 1097, 1320, 1563, 1827, 2098, 2533, 2932, 3475, 4185, 4756, 5726, 6614, 7686, 9189, 10825
Offset: 0

Views

Author

Pontus von Brömssen, Oct 05 2024

Keywords

Comments

A pair of partitions of n is irreducible if the two partitions yield the same multinomial coefficient but have no parts in common. The partitions in the pair are required to be distinct, otherwise a(0) would be 1.

Examples

			   n | irreducible pairs of partitions of n
  ---+-------------------------------------
   7 | (1,1,1,4), (2,2,3)
   8 | (1,1,6), (3,5)
  10 | (1,4,5), (2,2,6)
  13 | (1,1,1,10), (6,7)
     | (1,1,3,8), (2,4,7)
     | (1,1,1,1,1,8), (2,2,2,7)
  14 | (1,2,2,9), (3,3,8)
     | (1,1,1,2,9), (3,4,7)
     | (1,1,1,1,1,1,4,4), (2,2,2,2,3,3)
		

Crossrefs

A376828 a(n) = smallest integer k >= 0 such that there exist n disjoint partitions of k that yield the same multinomial coefficient.

Original entry on oeis.org

0, 7, 31, 50
Offset: 1

Views

Author

Pontus von Brömssen, Oct 05 2024

Keywords

Comments

a(5) > 153 if it exists. - Max Alekseyev, May 18 2025

Examples

			a(2) = 7 is the smallest k such that A376821(k) > 0.
    |       | n partitions of a(n) with a common multinomial coefficient
  n |  a(n) |  but no part appearing in more than one of the partitions
  --+-------+-----------------------------------------------------------
  1 |    0  | ()
  2 |    7  | (1,1,1,4), (2,2,3)
  3 |   31  | (1,1,4,4,4,7,10), (2,2,2,2,5,9,9), (3,3,3,6,8,8)
  4 |   50  | (1,1,1,9,12,26), (2,2,8,11,27), (3,3,3,16,25), (5,6,15,24)
		

Crossrefs

Extensions

Name edited by Max Alekseyev, May 18 2025
Showing 1-5 of 5 results.