cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070290 a(n) = lcm(8,n)/gcd(8,n).

Original entry on oeis.org

8, 4, 24, 2, 40, 12, 56, 1, 72, 20, 88, 6, 104, 28, 120, 2, 136, 36, 152, 10, 168, 44, 184, 3, 200, 52, 216, 14, 232, 60, 248, 4, 264, 68, 280, 18, 296, 76, 312, 5, 328, 84, 344, 22, 360, 92, 376, 6, 392, 100, 408, 26, 424, 108, 440, 7, 456, 116, 472, 30, 488
Offset: 1

Views

Author

Amarnath Murthy, May 10 2002

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1}, {8,4,24,2,40,12,56,1,72,20,88,6,104,28,120,2}, 37] (* Georg Fischer, Feb 27 2019 *)

Formula

a(n) = A109049(n) / A109011(n). - R. J. Mathar, Feb 12 2019
a(n) = 2*a(n-8)-a(n-16). - R. J. Mathar, Feb 12 2019
Sum_{k=1..n} a(k) ~ (293/128)*n^2. - Amiram Eldar, Oct 07 2023

A070291 a(n) = lcm(10,n)/gcd(10,n).

Original entry on oeis.org

10, 5, 30, 10, 2, 15, 70, 20, 90, 1, 110, 30, 130, 35, 6, 40, 170, 45, 190, 2, 210, 55, 230, 60, 10, 65, 270, 70, 290, 3, 310, 80, 330, 85, 14, 90, 370, 95, 390, 4, 410, 105, 430, 110, 18, 115, 470, 120, 490, 5, 510, 130, 530, 135, 22, 140, 570, 145, 590, 6
Offset: 1

Views

Author

Amarnath Murthy, May 10 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM[10,n]/GCD[10,n],{n,80}] (* Harvey P. Dale, Nov 01 2013 *)

Formula

a(n) = A109051(n) / A109013(n). - R. J. Mathar, Feb 12 2019
a(n) = 2*a(n-10) - a(n-20). - R. J. Mathar, Feb 12 2019
Sum_{k=1..n} a(k) ~ (101/40)*n^2. - Amiram Eldar, Oct 07 2023

A070293 a(n) = lcm(30,n)/gcd(30,n).

Original entry on oeis.org

30, 15, 10, 30, 6, 5, 210, 60, 30, 3, 330, 10, 390, 105, 2, 120, 510, 15, 570, 6, 70, 165, 690, 20, 30, 195, 90, 210, 870, 1, 930, 240, 110, 255, 42, 30, 1110, 285, 130, 12, 1230, 35, 1290, 330, 6, 345, 1410, 40, 1470, 15
Offset: 1

Views

Author

Amarnath Murthy, May 10 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM[30,n]/GCD[30,n],{n,50}]  (* Harvey P. Dale, Apr 17 2011 *)

Formula

Sum_{k=1..n} a(k) ~ (1919/360)*n^2. - Amiram Eldar, Oct 07 2023

Extensions

More terms from Harvey P. Dale, Apr 17 2011
Showing 1-3 of 3 results.