cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070292 a(n) = lcm(12,n)/gcd(12,n).

Original entry on oeis.org

12, 6, 4, 3, 60, 2, 84, 6, 12, 30, 132, 1, 156, 42, 20, 12, 204, 6, 228, 15, 28, 66, 276, 2, 300, 78, 36, 21, 348, 10, 372, 24, 44, 102, 420, 3, 444, 114, 52, 30, 492, 14, 516, 33, 60, 138, 564, 4, 588, 150, 68, 39, 636, 18, 660, 42, 76, 174, 708, 5, 732, 186, 84, 48
Offset: 1

Views

Author

Amarnath Murthy, May 10 2002

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,100,print1(lcm(12,n)/gcd(n,12),","))
    
  • PARI
    Vec(x*(12 + 6*x + 4*x^2 + 3*x^3 + 60*x^4 + 2*x^5 + 84*x^6 + 6*x^7 + 12*x^8 + 30*x^9 + 132*x^10 + x^11 + 132*x^12 + 30*x^13 + 12*x^14 + 6*x^15 + 84*x^16 + 2*x^17 + 60*x^18 + 3*x^19 + 4*x^20 + 6*x^21 + 12*x^22) / (x^24 - 2*x^12 + 1) + O(x^60)) \\ Colin Barker, Mar 05 2019
    
  • Python
    from math import gcd, lcm
    def a(n): return lcm(12, n)//gcd(12, n)
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Dec 06 2021

Formula

a(n) = A109053(n)/A109015(n) = 12*n/A109015(n)^2. - R. J. Mathar, Feb 12 2019
a(n) = 2*a(n-12) - a(n-24). - R. J. Mathar, Feb 12 2019
G.f.: x*(12 + 6*x + 4*x^2 + 3*x^3 + 60*x^4 + 2*x^5 + 84*x^6 + 6*x^7 + 12*x^8 + 30*x^9 + 132*x^10 + x^11 + 132*x^12 + 30*x^13 + 12*x^14 + 6*x^15 + 84*x^16 + 2*x^17 + 60*x^18 + 3*x^19 + 4*x^20 + 6*x^21 + 12*x^22) / (x^24 - 2*x^12 + 1). - Colin Barker, Mar 05 2019
Sum_{k=1..n} a(k) ~ (703/288)*n^2. - Amiram Eldar, Oct 07 2023

Extensions

More terms from Benoit Cloitre, May 16 2002

A070290 a(n) = lcm(8,n)/gcd(8,n).

Original entry on oeis.org

8, 4, 24, 2, 40, 12, 56, 1, 72, 20, 88, 6, 104, 28, 120, 2, 136, 36, 152, 10, 168, 44, 184, 3, 200, 52, 216, 14, 232, 60, 248, 4, 264, 68, 280, 18, 296, 76, 312, 5, 328, 84, 344, 22, 360, 92, 376, 6, 392, 100, 408, 26, 424, 108, 440, 7, 456, 116, 472, 30, 488
Offset: 1

Views

Author

Amarnath Murthy, May 10 2002

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1}, {8,4,24,2,40,12,56,1,72,20,88,6,104,28,120,2}, 37] (* Georg Fischer, Feb 27 2019 *)

Formula

a(n) = A109049(n) / A109011(n). - R. J. Mathar, Feb 12 2019
a(n) = 2*a(n-8)-a(n-16). - R. J. Mathar, Feb 12 2019
Sum_{k=1..n} a(k) ~ (293/128)*n^2. - Amiram Eldar, Oct 07 2023

A070293 a(n) = lcm(30,n)/gcd(30,n).

Original entry on oeis.org

30, 15, 10, 30, 6, 5, 210, 60, 30, 3, 330, 10, 390, 105, 2, 120, 510, 15, 570, 6, 70, 165, 690, 20, 30, 195, 90, 210, 870, 1, 930, 240, 110, 255, 42, 30, 1110, 285, 130, 12, 1230, 35, 1290, 330, 6, 345, 1410, 40, 1470, 15
Offset: 1

Views

Author

Amarnath Murthy, May 10 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM[30,n]/GCD[30,n],{n,50}]  (* Harvey P. Dale, Apr 17 2011 *)

Formula

Sum_{k=1..n} a(k) ~ (1919/360)*n^2. - Amiram Eldar, Oct 07 2023

Extensions

More terms from Harvey P. Dale, Apr 17 2011
Showing 1-3 of 3 results.