cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A217276 Numbers n such that no prime divisors of n^2 + 1 are of the form a^2 + 1.

Original entry on oeis.org

34, 44, 46, 50, 60, 70, 76, 86, 96, 100, 104, 114, 136, 144, 164, 186, 190, 194, 196, 214, 220, 226, 244, 246, 254, 266, 274, 286, 294, 296, 304, 316, 320, 324, 330, 334, 346, 354, 356, 360, 366, 374, 390, 410, 416, 424, 426, 434, 454, 456, 460, 476, 484, 486
Offset: 1

Views

Author

Michel Lagneau, Sep 29 2012

Keywords

Examples

			34 is in the sequence because 34^2+1 = 1157 = 13*89 and the prime divisors 13, 89 are not of the form a^2+1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do: x:=factorset(n^2+1):n1:=nops(x):ii:=0:for m from 1 to n1 do:y:=sqrt(x[m]-1):if y=floor(y) then ii:=1:else fi:od:if ii=0 then printf(`%d, `,n):else fi:od:
  • Mathematica
    fQ[n_] := Module[{lst = Transpose[FactorInteger[n^2 + 1]][[1]]}, Length[lst] > 1 && And @@ (Not /@ IntegerQ /@ Sqrt[lst - 1])]; Select[Range[500], fQ] (* T. D. Noe, Oct 01 2012 *)

A368544 The number of divisors of n whose prime factors are all of the form k^2+1.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 1, 4, 1, 3, 1, 2, 2, 5, 2, 2, 1, 6, 1, 2, 1, 4, 3, 2, 1, 3, 1, 4, 1, 6, 1, 4, 2, 3, 2, 2, 1, 8, 1, 2, 1, 3, 2, 2, 1, 5, 1, 6, 2, 3, 1, 2, 2, 4, 1, 2, 1, 6, 1, 2, 1, 7, 2, 2, 1, 6, 1, 4, 1, 4, 1, 4, 3, 3, 1, 2, 1, 10, 1, 2, 1, 3, 4, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

The number of terms of A180252 that divide n.

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n][[;; , 1]], IntegerQ[Sqrt[# - 1]] &]; f[p_, e_] := If[q[p], e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(issquare(f[i,1]-1), f[i,2] + 1, 1))};
    
  • Python
    from math import prod
    from sympy import factorint
    from sympy.ntheory.primetest import is_square
    def A368544(n): return prod(e+1 for p, e in factorint(n).items() if is_square(p-1)) # Chai Wah Wu, Dec 30 2023

Formula

Multiplicative with a(p^e) = e+1 if p is of the form k^2+1, and 1 otherwise.
a(n) >= 1, with equality if and only if all the prime factors of n are in A070303.
a(n) <= A000005(n), with equality if and only if n is in A180252.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{k in A005574} (1 + 1/k^2) = 2.80986546... .
Showing 1-2 of 2 results.