A070342 a(n) = 3^n mod 19.
1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
Mathematica
PowerMod[3, Range[0, 50], 19] (* G. C. Greubel, Mar 12 2016 *)
-
PARI
a(n)=lift(Mod(3,19)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(3,n,19)for n in range(0, 75)] # Zerinvary Lajos, Nov 25 2009
Formula
From R. J. Mathar, Apr 13 2010: (Start)
a(n)= a(n-1) - a(n-9) + a(n-10).
G.f.: (1+2*x+6*x^2-x^3-3*x^4+10*x^5-8*x^6-5*x^7+4*x^8+13*x^9)/ ((1-x) * (1+x) * (x^2 -x+1) * (x^6-x^3+1)). (End)
a(n) = a(n-18). - G. C. Greubel, Mar 12 2016