A070349 a(n) = 2^n mod 43.
1, 2, 4, 8, 16, 32, 21, 42, 41, 39, 35, 27, 11, 22, 1, 2, 4, 8, 16, 32, 21, 42, 41, 39, 35, 27, 11, 22, 1, 2, 4, 8, 16, 32, 21, 42, 41, 39, 35, 27, 11, 22, 1, 2, 4, 8, 16, 32, 21, 42, 41, 39, 35, 27, 11, 22, 1, 2, 4, 8, 16, 32, 21, 42, 41, 39, 35, 27, 11, 22, 1, 2, 4, 8, 16, 32, 21
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,-1,1).
Programs
-
GAP
a:=List([0..100],n->PowerMod(2,n,43));; Print(a); # Muniru A Asiru, Jan 28 2019
-
Mathematica
PowerMod[2, Range[0, 50], 43] (* G. C. Greubel, Mar 11 2016 *)
-
PARI
a(n)=lift(Mod(2,43)^n) \\ Charles R Greathouse IV, Mar 22 2016
Formula
From R. J. Mathar, Feb 06 2011: (Start)
a(n) = a(n-1) - a(n-7) + a(n-8).
G.f.: ( -1-x-2*x^2-4*x^3-8*x^4-16*x^5+11*x^6-22*x^7 ) / ( (x-1)*(1+x)*(x^6-x^5+x^4-x^3+x^2-x+1) ). (End)
a(n) = a(n-14). - G. C. Greubel, Mar 11 2016