A070350 a(n) = 2^n mod 45.
1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23, 1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23, 1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23, 1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23, 1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23, 1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23, 1, 2, 4, 8, 16, 32, 19, 38
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
GAP
List([0..79],n->PowerMod(2,n,45)); # Muniru A Asiru, Jan 30 2019
-
Mathematica
PowerMod[2, Range[0, 50], 45] (* G. C. Greubel, Mar 11 2016 *)
-
PARI
a(n)=lift(Mod(2,45)^n) \\ Charles R Greathouse IV, Mar 22 2016
Formula
From R. J. Mathar, Feb 06 2011: (Start)
a(n) = a(n-12).
G.f.: (-1-2*x-4*x^2-8*x^3-16*x^4-32*x^5-19*x^6-38*x^7-31*x^8 -17*x^9 -34*x^10-23*x^11 ) / ( (x-1)*(1+x+x^2)*(1+x)*(1-x+x^2)*(1+x^2)*(x^4-x^2+1) ). (End)