A070387 a(n) = 5^n mod 41.
1, 5, 25, 2, 10, 9, 4, 20, 18, 8, 40, 36, 16, 39, 31, 32, 37, 21, 23, 33, 1, 5, 25, 2, 10, 9, 4, 20, 18, 8, 40, 36, 16, 39, 31, 32, 37, 21, 23, 33, 1, 5, 25, 2, 10, 9, 4, 20, 18, 8, 40, 36, 16, 39, 31, 32, 37, 21, 23, 33, 1, 5, 25, 2, 10, 9, 4, 20, 18, 8, 40, 36, 16, 39, 31, 32, 37
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
Mathematica
PowerMod[5, Range[0, 50], 41] (* G. C. Greubel, Mar 16 2016 *)
-
PARI
a(n) = lift(Mod(5, 41)^n); \\ Altug Alkan, Mar 16 2016
-
Sage
[power_mod(5,n,41) for n in range(0,77)] # Zerinvary Lajos, Nov 26 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-10) + a(n-11).
G.f.: ( -1-4*x-20*x^2+23*x^3-8*x^4+x^5+5*x^6-16*x^7+2*x^8+10*x^9-33*x^10 ) / ( (x-1)*(x^2+1)*(x^8-x^6+x^4-x^2+1) ). (End)
a(n) = a(n-20). - G. C. Greubel, Mar 16 2016