A070395 a(n) = 6^n mod 19.
1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9, 16, 1, 6, 17, 7, 4, 5, 11, 9
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1). [_R. J. Mathar_, Apr 20 2010]
Programs
-
Mathematica
PowerMod[6, Range[0, 50], 19] (* G. C. Greubel, Mar 18 2016 *)
-
PARI
a(n) = lift(Mod(6, 19)^n); \\ Altug Alkan, Mar 18 2016
-
Sage
[power_mod(6,n,19)for n in range(0,89)] # Zerinvary Lajos, Nov 27 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-9).
G.f.: ( -1-6*x-17*x^2-7*x^3-4*x^4-5*x^5-11*x^6-9*x^7-16*x^8 ) / ( (x-1)*(1+x+x^2)*(x^6+x^3+1) ). (End)