A070433 a(n) = n^2 mod 9.
0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
Table[Mod[n^2,9],{n,0,200}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *) PowerMod[Range[0,200],2,9] (* Harvey P. Dale, Jun 11 2011 *)
-
PARI
a(n)=[0,1,4,0,7,7,0,4,1][n%9+1] \\ Charles R Greathouse IV, Jun 11 2011
-
PARI
a(n)=n^2%9 \\ Charles R Greathouse IV, Jun 11 2011
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-9).
G.f.: ( -x*(1+x)*(x^6+3*x^5-3*x^4+10*x^3-3*x^2+3*x+1) ) / ( (x-1)*(1+x+x^2)*(x^6+x^3+1) ). (End)
Comments