A070443 a(n) = n^2 mod 21.
0, 1, 4, 9, 16, 4, 15, 7, 1, 18, 16, 16, 18, 1, 7, 15, 4, 16, 9, 4, 1, 0, 1, 4, 9, 16, 4, 15, 7, 1, 18, 16, 16, 18, 1, 7, 15, 4, 16, 9, 4, 1, 0, 1, 4, 9, 16, 4, 15, 7, 1, 18, 16, 16, 18, 1, 7, 15, 4, 16, 9, 4, 1, 0, 1, 4, 9, 16, 4, 15, 7, 1, 18, 16, 16, 18, 1, 7, 15, 4, 16, 9, 4, 1, 0, 1, 4, 9
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Sathwik Karnik, On the classification and algorithmic analysis of Carmichael numbers, arXiv:1702.08066 [math.NT], 2016. See Table 1.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
Table[Mod[n^2,21],{n,0,200}] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2011 *) PowerMod[Range[0,90],2,21] (* Harvey P. Dale, Jan 19 2013 *)
-
PARI
a(n)=n^2%21 \\ Charles R Greathouse IV, Apr 06 2016
Formula
From R. J. Mathar, Jul 27 2015: (Start)
a(n) = a(n-21).
G.f.: -x *(1+x) *(x^18 +3*x^17 +6*x^16 +10*x^15 -6*x^14 +21*x^13 -14*x^12 +15*x^11 +3*x^10 +13*x^9 +3*x^8 +15*x^7 -14*x^6 +21*x^5 -6*x^4 +10*x^3 +6*x^2 +3*x+1) / ( (x-1) *(1+x^6+x^5+x^4+x^3+x^2+x) *(1+x+x^2) *(1-x+x^3-x^4+x^6-x^8+x^9-x^11+x^12) ). (End)