cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070537 Numbers k such that the k-th cyclotomic polynomial has more terms than the largest prime factor of k.

Original entry on oeis.org

1, 15, 21, 30, 33, 35, 39, 42, 45, 51, 55, 57, 60, 63, 65, 66, 69, 70, 75, 77, 78, 84, 85, 87, 90, 91, 93, 95, 99, 102, 105, 110, 111, 114, 115, 117, 119, 120, 123, 126, 129, 130, 132, 133, 135, 138, 140, 141, 143, 145, 147, 150, 153, 154, 155, 156, 159, 161, 165
Offset: 1

Views

Author

Labos Elemer, May 03 2002

Keywords

Comments

When (as at k=105) coefficients are not equal to 1 or -1, terms in C[k,x] are counted with multiplicity. This comment was left by the original author, but please see my comment in A070536. - Antti Karttunen, Feb 15 2019
Union of A324110 and A324111. - Antti Karttunen, Feb 15 2019
It appears that except for the initial 1, the terms are products of two or more distinct odd primes. - Enrique Navarrete, Oct 16 2022

Examples

			k=21: Cyclotomic[21,x] = 1 - x + x^3 - x^4 + x^6 - x^8 + x^9 - x^11 + x^12 has 9 terms while the largest prime factor of 21 is 7; 9 > 7, so 21 is in the sequence.
		

Crossrefs

Cf. A006530, A051664, A070536, A070776 (complement), A324110, A324111.

Programs

Formula

Numbers n satisfying A070536(n) = A051664(n) - A006530(n) > 0.

Extensions

Edited by N. J. A. Sloane, Nov 30 2022