A070806 Primes p such that cototient(totient(p)) = A070556(p) is a power of 2.
3, 5, 7, 13, 17, 29, 97, 113, 193, 257, 449, 509, 769, 7937, 12289, 65537, 114689, 520193, 786433, 7340033, 8388593, 33292289, 33550337, 469762049, 2130706433, 3221225473, 8588886017, 137438691329, 206158430209
Offset: 1
Examples
Powers of 2 observable in A070556[this sequence] = {1, 2, 4, 8, 16, 64, 128, 256, 512, 4096, 8192, 32768, 65536, 262144, 524288, ...}. For F(m), Fermat prime:phi[F(m)]=2^m, cototient[2^m]=2^(m-1); if n=113: phi[113]=112, cototient[112]=112-48=64, so 113 is in this sequence.
Programs
-
Mathematica
Do[s= EulerPhi[n]-EulerPhi[EulerPhi[n]]; If[IntegerQ[Log[2, s]]&&PrimeQ[n], Print[n]], {n, 1, 10000000}]
-
PARI
ispow2(n)=n==1<
Charles R Greathouse IV, May 17 2011
Extensions
a(20)-a(27) from Donovan Johnson, Feb 06 2010
a(28)-a(29) from Charles R Greathouse IV, May 17 2011