A070562 Fecundity of n.
0, 10, 9, 9, 8, 1, 8, 7, 7, 6, 0, 8, 7, 7, 6, 1, 6, 6, 5, 3, 0, 5, 5, 4, 5, 2, 4, 5, 2, 3, 0, 3, 4, 2, 2, 1, 3, 3, 3, 2, 0, 4, 1, 2, 1, 3, 1, 2, 1, 4, 0, 5, 3, 8, 2, 1, 4, 2, 2, 1, 0, 2, 2, 5, 5, 2, 1, 1, 7, 5, 0, 4, 4, 2, 1, 1, 6, 5, 3, 2, 0, 4, 2, 1, 7, 3, 3, 3, 4, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
Offset: 0
Examples
1 -> 2 -> 4 -> 8 -> 16 -> 22 -> 26 -> 38 -> 62 -> 74 -> 102 has fecundity 10.
References
- P. Tougne, Jeux Mathematiques column, Pour La Science (French edition of "Scientific American"), Vol. 82, Aug. 1984, Prob. 6, pp. 101, 104.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
f[ n_ ] := Block[ {a=n,b,c=0}, While[ b=Times@@IntegerDigits[ a ]; b>0, a=a+b; c++ ]; c ]; f[ 0 ]=0; Table[ f[ n ], {n,0,100} ] f[n_] := Length@ FixedPointList[ # + Times @@ IntegerDigits@# &, n] - 2; Array[f, 105, 0] (* Robert G. Wilson v, Jun 27 2010 *)
-
PARI
prodig(n) = local(s, d); if(n==0, s=0, s=1; while(n>0, d=divrem(n, 10); n=d[1 ]; s=s*d[2 ])); s for(n=0, 92, x=n; c=0; while((d=prodig(x))!=0, c++; x=x+d); print1(c, ", "))
Extensions
Edited and extended by Klaus Brockhaus, May 08 2002
Clarified the definition of fecundity and improved the Mathematica program. - T. D. Noe, Oct 06 2008
More terms from Robert G. Wilson v, Jun 27 2010
Comments