A070563 a(n) = 0 if 3 divides the Ramanujan number tau(n) (A000594(n)), otherwise 1.
1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..131072 (first 100000 terms from Antti Karttunen)
- P. Moree and H. J. J. te Riele, The hexagonal versus the square lattice, arXiv:math/0204332 [math.NT], 2002.
- P. Moree and H. J. J. te Riele, The hexagonal versus the square lattice, Math. Comp. 73 (2004), no. 245, 451-473.
- Index entries for characteristic functions
Crossrefs
Programs
-
Mathematica
a[n_] := Boole[!Divisible[RamanujanTau[n], 3]]; Array[a, 92] (* Jean-François Alcover, Jul 05 2017 *)
-
PARI
A070563(n) = !!(ramanujantau(n)%3); \\ Antti Karttunen, Jul 02 2024
-
PARI
A070563(n) = ((n%3) && (sigma(n)%3)); \\ Antti Karttunen, Jul 03 2024
-
PARI
A070563(n) = { my(f=factor(n)); prod(i=1, #f~, if(3==f[i, 1], 0, 1==(f[i, 1]%3), 2!=(f[i, 2]%3), (1+f[i, 2])%2)); }; \\ Antti Karttunen, Jul 03 2024
Formula
a(n) = A011655(n) * A353815(n), conjectured by Antti Karttunen, proved by Seiichi Manyama, Jul 03 2024
Comments