A070671 Smallest m in range 2..n-1 such that m^6 == 1 mod n, or 1 if no such number exists.
1, 1, 2, 3, 4, 5, 2, 3, 2, 9, 10, 5, 3, 3, 4, 7, 16, 5, 7, 9, 2, 21, 22, 5, 24, 3, 8, 3, 28, 11, 5, 15, 10, 33, 4, 5, 10, 7, 4, 9, 40, 5, 6, 21, 4, 45, 46, 7, 18, 49, 16, 3, 52, 17, 21, 3, 7, 57, 58, 11, 13, 5, 2, 31, 4, 23, 29, 33, 22, 9, 70, 5, 8, 11, 26, 7, 10, 17
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A070667.
Programs
-
Maple
a:= proc(n) local m; for m from 2 to n-1 do if m &^ 6 mod n = 1 then return m fi od; 1 end: seq(a(n), n=1..100); # Alois P. Heinz, Jun 29 2014
-
Mathematica
a[n_] := Module[{m}, For[m = 2, m <= n-1, m++, If[PowerMod[m, 6, n] == 1, Return[m]]]; 1]; Array[a, 100] (* Jean-François Alcover, Nov 17 2020 *)
-
PARI
a(n) = {for (m=2, n-1, if (lift(Mod(m, n)^6) == 1, return (m));); return (1);} \\ Michel Marcus, Jun 29 2014