A070694 Numbers b such that b+1, b^2+1, b^4+1, b^8+1 and b^16+1 are primes.
1, 2, 337536, 585106, 602056, 2071960, 11861410, 20706120, 54020170, 72696726, 87584646, 89445636, 95895930, 98583340, 98595070, 112204200, 205739220, 279448296, 292582836, 337969690, 349672456, 432972780, 437874186, 474186576, 479631880, 483333426, 621777466, 643697776
Offset: 1
Keywords
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 1..1000 (calculated by Yves Gallot).
- Yves Gallot, GFP (Generalized Fermat Progressions) / gfp5, software for calculating this sequence.
Programs
-
Mathematica
Do[ If[ PrimeQ[n + 1] && PrimeQ[n^2 + 1] && PrimeQ[n^4 + 1] && PrimeQ[n^8 + 1] && PrimeQ[n^16 + 1], Print[n]], {n, 1, 10^7}] Select[Range[21*10^5],AllTrue[#^2^Range[0,4]+1,PrimeQ]&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Jun 02 2024 *)
Extensions
a(7)-a(24) from Donovan Johnson, Dec 02 2009
a(25)-a(28) from Alex Ratushnyak, Jan 02 2014
Comments