A090872
a(n) is the smallest number m greater than 1 such that m^(2^k)+1 for k=0,1,...,n are primes.
Original entry on oeis.org
2, 2, 2, 2, 2, 7072833120, 2072005925466, 240164550712338756
Offset: 0
a(5)=7072833120 because 7072833120^2^k+1 for k=0,1,2,3,4,5 are primes.
A225560
Least numbers k for each base b >= 2 such that N = b^(2^n) + k is prime for 7 consecutive values from n = 0 to n = 6.
Original entry on oeis.org
66747, 18248, 53097, 2037018, 142531, 1691820, 1322535, 1659002, 266251, 6185640, 95075, 2518780, 657645, 325528, 71971, 2533260, 21494113, 682318, 3114879, 6523742, 9196027, 3588090, 12492473, 816078, 14837001, 12060370, 2933065, 12212058, 3122953
Offset: 2
-
for(b=2,30,if(b%2==0,a=1,a=0);forstep(k=a,10^8,2,i=0;for(n=0,6,m=b^2^n+k;if(isprime(m),i++;if(i>6,print1(k,", ");next(3))))))
A235390
Numbers k such that k^(2^i)+1 are primes for i=0...5.
Original entry on oeis.org
1, 7072833120, 9736020616, 12852419340, 36632235070, 41452651506, 44619665520, 53569833730, 54673378956, 66032908020, 69449109580, 69936419290, 82549220670, 99574135650, 106362659256, 108208833756, 113366066976, 136032409906, 167385272500, 174963279540, 195763339776
Offset: 1
k=7072833120 is in the sequence because the following are six primes: 7072833121, 7072833120^2+1, k^4+1, k^8+1, k^16+1, k^32+1.
A335805
Numbers b such that b^(2^i) + 1 is prime for i = 0...6.
Original entry on oeis.org
1, 2072005925466, 5082584069416, 12698082064890, 29990491969260, 46636691707050, 65081025897426, 83689703895606, 83953213480290, 105003537341346, 105699143244090, 107581715369910, 111370557491826, 111587899569066, 128282713771996, 133103004825210
Offset: 1
A337364
Numbers b such that b^(2^i) + 1 is prime for i = 0...7.
Original entry on oeis.org
1, 240164550712338756, 3686834112771042790, 6470860179642426900, 7529068955648085700, 10300630358100537120, 16776829808789151280, 17622040391833711780, 19344979062504927000, 23949099004395080026, 25348938242408650240, 30262840543567048476, 35628481193915651646
Offset: 1
A225321
Numbers b such that b^(2^n) + 3 is prime for n from 0 to 4.
Original entry on oeis.org
2564954, 4505138, 6319754, 10004666, 13410068, 28358686, 31079126, 31331314, 37983154, 40470296, 43452004, 58717498, 66643660, 67991588, 77422568, 77995658, 79257766, 98229376, 101553298, 123965218, 125464136, 126241688, 130818598, 130838170, 131305474
Offset: 1
-
Select[Prime@Range[3, 10^6]-3, PrimeQ[#^2 + 3] && PrimeQ[#^4 + 3] && PrimeQ[#^8 + 3] && PrimeQ[#^16 + 3] &] (* Giovanni Resta, May 05 2013 *)
Missing terms a(2) and a(5) and a(12)-a(25) from
Giovanni Resta, May 05 2013
A225392
Numbers b such that b^(2^n) + 2 is prime for n from 0 to 4.
Original entry on oeis.org
22155, 1864149, 2760681, 6222765, 22687797, 25631319, 29309589, 33333069, 36490905, 56310891, 60212889, 74097849, 76008207, 80864685, 84214395, 132006225, 132621171, 137362521, 138993381, 152223885, 154185525, 175950081, 188261481, 188677335, 194279955
Offset: 1
-
k=2;forstep(b=1,5*10^7,[4,2,2,2],i=0;for(n=0,4,m=b^2^n+k;if(isprime(m),i++;if(i>4,print([b,m,n,i])))))
Showing 1-7 of 7 results.
Comments