cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090872 a(n) is the smallest number m greater than 1 such that m^(2^k)+1 for k=0,1,...,n are primes.

Original entry on oeis.org

2, 2, 2, 2, 2, 7072833120, 2072005925466, 240164550712338756
Offset: 0

Views

Author

Farideh Firoozbakht, Jan 31 2004

Keywords

Comments

The first five terms of this sequence correspond to Fermat primes.
Note that 7072833120 is not the smallest base to give at least six possibly nonconsecutive k values. For example, 292582836^(2^k) + 1 is prime for k = 0,1,2,3,4,7. - Jeppe Stig Nielsen, Sep 18 2022

Examples

			a(5)=7072833120 because 7072833120^2^k+1 for k=0,1,2,3,4,5 are primes.
		

Crossrefs

All solutions for fixed n: A006093 (n=0), A070689 (n=1), A070325 (n=2), A070655 (n=3), A070694 (n=4), A235390 (n=5), A335805 (n=6), A337364 (n=7).

Extensions

a(6) from Jens Kruse Andersen, May 06 2007
a(7) from Kellen Shenton, Aug 13 2020

A335805 Numbers b such that b^(2^i) + 1 is prime for i = 0...6.

Original entry on oeis.org

1, 2072005925466, 5082584069416, 12698082064890, 29990491969260, 46636691707050, 65081025897426, 83689703895606, 83953213480290, 105003537341346, 105699143244090, 107581715369910, 111370557491826, 111587899569066, 128282713771996, 133103004825210
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 14 2020

Keywords

Comments

Explicitly, for each b, the seven numbers b+1, b^2+1, b^4+1, b^8+1, b^16+1, b^32+1, and b^64+1 must be primes (generalized Fermat primes).
The first term greater than 1 such that b^(2^7) + 1 is also prime, is 240164550712338756, see A337364. - Jeppe Stig Nielsen, Aug 25 2020

Crossrefs

A336364 Rectangular array by antidiagonals: row n shows the positive integers whose distance to the nearest prime is n.

Original entry on oeis.org

2, 3, 1, 5, 4, 9, 7, 6, 15, 26, 11, 8, 21, 34, 93, 13, 10, 25, 50, 117, 118, 17, 12, 27, 56, 123, 122, 119, 19, 14, 33, 64, 143, 144, 121, 120, 23, 16, 35, 76, 145, 186, 205, 300, 531, 29, 18, 39, 86, 185, 204, 217, 324, 533, 532, 31, 20, 45, 92, 187, 206
Offset: 1

Views

Author

Clark Kimberling, Jul 19 2020

Keywords

Comments

Row 1: the primes, A000040. Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers.

Examples

			Corner:
   2   3   5   7  11   13   17   19   23   29   31   37
   1   4   6   8  10   12   14   16   18   20   22   24
   9  15  21  25  27   33   35   39   45   49   51   55
  26  34  50  56  64   76   86   92   94  116  124  134
  93 117 123 143 145  185  187  203  207  215  219  245
		

Crossrefs

Programs

  • Mathematica
    a[?PrimeQ] = 0; a[n] := Min[NextPrime[n] - n, n - NextPrime[n, -1]];
    t = Table[a[n], {n, 1, 2000}]; (* A051699 *)
    r[n_] := Flatten[Position[t, n]]; u[n_, k_] := r[n][[k]];
    TableForm[Table[u[n, k], {n, 0, 15}, {k, 1, Length[r[n]]}]] (* A337364, array *)
    Table[u[n - k, k], {n, 0, 15}, {k, n, 1, -1}] // Flatten    (* A337364, sequence *)
Showing 1-3 of 3 results.