cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A129613 a(n) is the smallest natural number m such that 2^(2^k) + m is prime for k=0,1,...,n.

Original entry on oeis.org

1, 1, 1, 1, 1, 15, 66747, 475425, 12124167, 14899339905, 8073774344085
Offset: 0

Views

Author

Farideh Firoozbakht, May 13 2007, May 16 2007

Keywords

Comments

The first five terms of this sequence correspond to known Fermat primes.

Crossrefs

Extensions

a(10) from Jens Kruse Andersen, Jun 05 2010

A070694 Numbers b such that b+1, b^2+1, b^4+1, b^8+1 and b^16+1 are primes.

Original entry on oeis.org

1, 2, 337536, 585106, 602056, 2071960, 11861410, 20706120, 54020170, 72696726, 87584646, 89445636, 95895930, 98583340, 98595070, 112204200, 205739220, 279448296, 292582836, 337969690, 349672456, 432972780, 437874186, 474186576, 479631880, 483333426, 621777466, 643697776
Offset: 1

Views

Author

Robert G. Wilson v, May 13 2002

Keywords

Comments

The first term greater than 1 such that b^32+1 is also a prime is a(173) = 7072833120, see A235390. - Alex Ratushnyak, Jan 02 2014, comment extended by Jeppe Stig Nielsen, Aug 18 2020
The term a(2)=2 corresponds to the five classical Fermat primes. - Jeppe Stig Nielsen, Aug 18 2020

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[n + 1] && PrimeQ[n^2 + 1] && PrimeQ[n^4 + 1] && PrimeQ[n^8 + 1] && PrimeQ[n^16 + 1], Print[n]], {n, 1, 10^7}]
    Select[Range[21*10^5],AllTrue[#^2^Range[0,4]+1,PrimeQ]&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Jun 02 2024 *)

Extensions

a(7)-a(24) from Donovan Johnson, Dec 02 2009
a(25)-a(28) from Alex Ratushnyak, Jan 02 2014

A235390 Numbers k such that k^(2^i)+1 are primes for i=0...5.

Original entry on oeis.org

1, 7072833120, 9736020616, 12852419340, 36632235070, 41452651506, 44619665520, 53569833730, 54673378956, 66032908020, 69449109580, 69936419290, 82549220670, 99574135650, 106362659256, 108208833756, 113366066976, 136032409906, 167385272500, 174963279540, 195763339776
Offset: 1

Views

Author

Alex Ratushnyak, Jan 09 2014

Keywords

Comments

A subsequence of A070694.
Conjecture: the sequence is infinite.
For n=4 and n=9, a(n)*2+1 is also a prime.
The first term greater than 1 such that k^(2^6) + 1 is also prime, is a(148) = 2072005925466, see A335805. - Jeppe Stig Nielsen, Aug 18 2020

Examples

			k=7072833120 is in the sequence because the following are six primes: 7072833121, 7072833120^2+1, k^4+1, k^8+1, k^16+1, k^32+1.
		

Crossrefs

Extensions

a(1)=1 inserted by Jeppe Stig Nielsen, Aug 11 2020

A090873 a(n) is the smallest number m such that n^2^k + m^2^k is prime for k=0,1,2,3 and 4.

Original entry on oeis.org

1, 1, 218368, 9324385, 6628674, 601, 365082, 532253, 449140, 4193407, 175746, 2857547, 2752708, 6315245, 80612, 3354745, 10892, 953, 6577504, 157437, 2247676, 11357637, 7650, 272935, 318784, 8034141, 1158380, 22315, 610550, 340357
Offset: 1

Views

Author

Farideh Firoozbakht, Feb 06 2004

Keywords

Examples

			a(2)=1 because 2^2^k + 1 is prime for k= 0,1,2,3 and 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[m=1, !(PrimeQ[m+n]&&PrimeQ[m^2+n^2]&&PrimeQ[m^4+n^4]&& PrimeQ[m^8+n^8]&&PrimeQ[m^16+n^16]), m++ ];m);Do[Print[a[n]], {n, 50}]

Formula

a[n_] := (For[m=1, !(PrimeQ[m+n]&&PrimeQ[m^2+n^2]&&PrimeQ[m^4+n^4]&& PrimeQ[m^8+n^8]&&PrimeQ[m^16+n^16]), m++ ];m)

A335805 Numbers b such that b^(2^i) + 1 is prime for i = 0...6.

Original entry on oeis.org

1, 2072005925466, 5082584069416, 12698082064890, 29990491969260, 46636691707050, 65081025897426, 83689703895606, 83953213480290, 105003537341346, 105699143244090, 107581715369910, 111370557491826, 111587899569066, 128282713771996, 133103004825210
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 14 2020

Keywords

Comments

Explicitly, for each b, the seven numbers b+1, b^2+1, b^4+1, b^8+1, b^16+1, b^32+1, and b^64+1 must be primes (generalized Fermat primes).
The first term greater than 1 such that b^(2^7) + 1 is also prime, is 240164550712338756, see A337364. - Jeppe Stig Nielsen, Aug 25 2020

Crossrefs

A337364 Numbers b such that b^(2^i) + 1 is prime for i = 0...7.

Original entry on oeis.org

1, 240164550712338756, 3686834112771042790, 6470860179642426900, 7529068955648085700, 10300630358100537120, 16776829808789151280, 17622040391833711780, 19344979062504927000, 23949099004395080026, 25348938242408650240, 30262840543567048476, 35628481193915651646
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 25 2020

Keywords

Comments

Explicitly, for each b, the eight numbers b+1, b^2+1, b^4+1, b^8+1, b^16+1, b^32+1, b^64+1, and b^128+1 must be primes (generalized Fermat primes).

Crossrefs

Extensions

a(10)-a(12) from Jeppe Stig Nielsen, Sep 04 2020
a(13) found by Rob Gahan added by Jeppe Stig Nielsen, Feb 15 2021

A090874 a(n) is the smallest number m such that m^2^k + (m+1)^2^k is prime for k=0..n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1806390369, 218327374070, 3697211121741701604
Offset: 0

Views

Author

Farideh Firoozbakht, Feb 06 2004

Keywords

Comments

The first five terms of this sequence correspond to Fermat primes.

Examples

			a(5)=1806390369 because this is the smallest number m such that m^2^k + (m+1)^2^k is prime for k=0,1,2,3,4 and 5.
		

Crossrefs

Extensions

a(6) found by Kellen Shenton added by Jeppe Stig Nielsen, Mar 28 2022
a(7) from Kellen Shenton, Aug 27 2022

A090875 a(n) is the smallest number m such that m^(2^k) + 2^(2^k) is prime for k=0,1,...,n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2321204055, 37185086099807
Offset: 0

Views

Author

Farideh Firoozbakht, Feb 06 2004

Keywords

Comments

The first five terms of this sequence correspond to Fermat primes.
According to the answers to Prime Puzzle 399 (see link), a(6) is larger than 2.3*10^12. - M. F. Hasler, Aug 02 2007

Examples

			a(5)=2321204055 because 2321204055 is the smallest number m such that m^(2^k) + 2^(2^k) is prime for k=0,1,2,3,4 and 5.
		

Crossrefs

Extensions

a(6) found by Kellen Shenton sent in by Jeppe Stig Nielsen, Apr 06 2022

A343120 a(n) is the smallest number b such that (b^(2^k) + 1)/2 is prime for k = 0, 1, ..., n.

Original entry on oeis.org

3, 3, 3, 205, 2326161, 20589460461, 3847314721101
Offset: 0

Views

Author

Jeppe Stig Nielsen, Apr 05 2021

Keywords

Examples

			For n=3, the four numbers (205+1)/2, (205^2+1)/2, (205^4+1)/2, and (205^8+1)/2 are prime, and 205 is smallest with this property, so a(3)=205.
		

Crossrefs

Programs

  • PARI
    a(n)=forstep(b=3,+oo,2,for(k=0,n,!ispseudoprime((b^(2^k)+1)/2)&&next(2));return(b)) \\ if a(n-1) is known, b loop can start from there instead

Extensions

a(6) found by Kellen Shenton added by Jeppe Stig Nielsen, Apr 09 2021

A343121 a(n) is the least A for which there exists B with 0 < B < A so that A^(2^k) + B^(2^k) is prime for k = 0, 1, ..., n.

Original entry on oeis.org

2, 2, 2, 2, 2, 2669, 34559, 26507494, 3242781025
Offset: 0

Views

Author

Jeppe Stig Nielsen, Apr 05 2021

Keywords

Comments

For n < 5, the corresponding primes are Fermat primes, for higher n so-called generalized Fermat primes.

Examples

			For n=5, the six numbers 2669 + 720, 2669^2 + 720^2, 2669^4 + 720^4, 2669^8 + 720^8, 2669^16 + 720^16, and 2669^32 + 720^32 are all prime, and (A,B) = (2669,720) is the least pair with this property, so a(5)=2669.
For n=6, (A,B) = (34559,29000).
For n=7, (A,B) = (26507494,6329559).
For n=8, (A,B) = (3242781025,1554825312).
		

Crossrefs

Programs

  • PARI
    a(n)=for(A=1, oo, for(B=1, A-1, for(k=0, n, !ispseudoprime(A^(2^k)+B^(2^k)) && next(2)); return(A)))

Extensions

a(7) from Kellen Shenton, May 28 2022
a(8) from Kellen Shenton, Aug 27 2022
Showing 1-10 of 10 results.