A077594
Smallest number whose Reverse and Add! trajectory (presumably) contains exactly n palindromes, or -1 if there is no such number.
Original entry on oeis.org
196, 89, 49, 18, 9, 14, 7, 6, 3, 4, 2, 1, 10000, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 0
a(9) = 4 since the trajectory of 4 contains the nine palindromes 4, 8, 77, 1111, 2222, 4444, 8888, 661166, 3654563 and at 7309126 joins the trajectory of 10577 = A063048(6) and no m < 4 contains exactly nine palindromes.
A070743
n sets a new record for the index of the (presumably) last palindrome in the 'Reverse and Add' trajectory of n.
Original entry on oeis.org
1, 3, 5, 122, 160, 190, 739, 10000, 10058, 10151, 1003346, 1304392, 1702190
Offset: 1
678736545637876 is the 36th term and (presumably) the last palindrome in the trajectory of 5; for k < 5 the last palindrome has an index < 36 in the trajectory of k (cf. A070742), so 5 is in the sequence.
A070744
Records for the index of the (presumably) last palindrome in the 'Reverse and Add' trajectory of n.
Original entry on oeis.org
18, 32, 36, 37, 38, 39, 40, 54, 80, 82, 100, 101, 102
Offset: 1
A090069
Numbers n such that there are (presumably) eight palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
3, 8, 20, 22, 100, 101, 116, 122, 139, 151, 160, 215, 221, 238, 313, 314, 320, 337, 343, 413, 436, 512, 611, 634, 696, 710, 717, 727, 733, 832, 931, 1004, 1011, 1070, 1101, 1160, 1250, 1340, 1430, 1520, 1610, 1700, 1771, 2000, 2002, 2003, 2010, 2100, 2112
Offset: 1
The trajectory of 8 begins 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the eight palindromes in the trajectory of 8 and 8 is a term.
A090070
Numbers n such that there are (presumably) nine palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
4, 10, 11, 535, 1000, 1001, 10007, 10101, 20006, 30005, 50003, 60002, 70001, 80000, 80008, 100070, 110060, 120050, 130040, 140030, 150020, 160010, 170000, 170071, 200000, 200002, 1000003, 1000150, 1001001, 1010050, 1100140, 1110040, 1200130
Offset: 1
The trajectory of 4 begins 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 4, 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the nine palindromes in the trajectory of 4 and 4 is a term.
A090071
Numbers n such that there are (presumably) ten palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
2, 5, 10003, 30001, 40000, 40004, 100000, 100001, 2000000, 2000002
Offset: 1
The trajectory of 2 begins 2, 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 2, 4, 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the ten palindromes in the trajectory of 2 and 2 is a term.
A090072
Numbers n such that there are (presumably) eleven palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
1, 20000, 20002, 1000000, 1000001, 10000000, 10000001
Offset: 1
The trajectory of 1 begins 1, 2, 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 1, 2, 4, 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the eleven palindromes in the trajectory of 1 and 1 is a term.
A090075
(Presumed) number of palindromes in the Reverse and Add! trajectory of 10^n.
Original entry on oeis.org
11, 9, 8, 9, 12, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 0
A090074
(Presumed) last palindrome in the Reverse and Add! trajectory of 10^n.
Original entry on oeis.org
3654563, 678736545637876, 663305503366, 663787366, 88352682264077046228625388, 365468864563, 3654566654563, 36545633654563, 365456303654563, 3654563003654563, 36545630003654563, 365456300003654563
Offset: 0
A090062
There is (presumably) one and only one palindrome in the Reverse and Add! trajectory of n.
Original entry on oeis.org
89, 98, 167, 187, 266, 286, 365, 385, 479, 563, 578, 583, 662, 677, 682, 749, 761, 776, 779, 781, 829, 860, 869, 875, 880, 899, 928, 947, 968, 974, 977, 998, 1077, 1093, 1098, 1167, 1183, 1188, 1257, 1273, 1278, 1297, 1347, 1363, 1368, 1387, 1396, 1397, 1437
Offset: 1
The trajectory of 479 begins 479, 1453, 4994, 9988, 18887, ...; at 9988 it joins the (presumably) palindrome-free trajectory of A063048(3) = 1997, hence 4994 is the only palindrome in the trajectory of 479 and 479 is a term.
Showing 1-10 of 16 results.
Comments