cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353027 Tetrahedral (or triangular pyramidal) numbers which are products of four distinct primes.

Original entry on oeis.org

1330, 6545, 16215, 23426, 35990, 39711, 47905, 52394, 57155, 79079, 105995, 138415, 198485, 221815, 246905, 366145, 477191, 762355, 1004731, 1216865, 1293699, 1373701, 1587986, 1633355, 1726669, 1823471, 1975354, 2246839, 2862209, 2997411, 3208094, 3580779, 4149466, 4590551
Offset: 1

Views

Author

Massimo Kofler, Apr 18 2022

Keywords

Comments

A squarefree subsequence of tetrahedral numbers.

Examples

			   1330 = 19*20*21/6 = 2 *  5 *  7 * 19;
   6545 = 33*34*35/6 = 5 *  7 * 11 * 17;
  16215 = 45*46*47/6 = 3 *  5 * 23 * 47;
  23426 = 51*52*53/6 = 2 * 13 * 17 * 53.
		

Crossrefs

Intersection of A000292 and A046386.
Subsequence of A070755.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n,easy)[2];
      F[..,2] = [1,1,1,1]
    end proc:
    select(filter, [seq(n*(n+1)*(n+2)/6,n=1..1000)]); # Robert Israel, Apr 18 2023
  • Mathematica
    Select[Table[n*(n + 1)*(n + 2)/6, {n, 1, 300}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} &] (* Amiram Eldar, Apr 18 2022 *)
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen():
        for t in (n*(n+1)*(n+2)//6 for n in count(1)):
            f = factorint(t, multiple=True)
            if len(f) == len(set(f)) == 4: yield t
    print(list(islice(agen(), 34))) # Michael S. Branicky, May 28 2022

A354976 Squarefree tetrahedral numbers which are products of five distinct primes.

Original entry on oeis.org

7770, 14190, 98770, 121485, 129766, 273819, 383306, 457310, 632710, 735130, 848046, 971970, 1072445, 1456935, 1543465, 2027795, 2135445, 2190670, 2731135, 3136805, 3817670, 4775385, 4869634, 5159805, 5564321, 5989445, 6099006, 6209895, 8579746, 9145270, 9735114, 9886435
Offset: 1

Views

Author

Massimo Kofler, Jun 15 2022

Keywords

Comments

A squarefree subsequence of tetrahedral numbers.

Examples

			7770 = 35*36*37/6 = 2*3*5*7*37
14190 = 43*44*45/6 = 2*3*5*11*43
98770 = 83*84*85/6 = 2*5*7*17*83
121485 = 89*90*91/6 = 3*5*7*13*89
		

Crossrefs

Intersection of A000292 and A046387.
Subsequence of A070755.

Programs

  • Maple
    q:= n-> is(map(x-> x[2], ifactors(n)[2])=[1$5]):
    select(q, [n*(n+1)*(n+2)/6$n=1..500])[];  # Alois P. Heinz, Jun 15 2022
  • Mathematica
    Select[Table[n*(n+1)*(n+2)/6, {n, 1, 400}], FactorInteger[#][[;;, 2]] == {1, 1, 1, 1, 1} &] (* Amiram Eldar, Jun 15 2022 *)
    Select[Binomial[Range[500]+2,3],PrimeNu[#]==PrimeOmega[#]==5&] (* Harvey P. Dale, Jul 05 2025 *)

Extensions

Definition clarified by Harvey P. Dale, Jul 05 2025

A356095 Tetrahedral numbers which are products of three distinct primes.

Original entry on oeis.org

165, 286, 455, 969, 1771, 4495, 9139, 12341, 32509, 176851, 437989, 657359, 939929, 3737581, 9290431, 21084251, 26536591, 39338069, 44101441, 61690919, 92568571, 112805879, 289442201, 381588019, 439918931, 495593039, 711215371, 815946449, 1008077071, 1103914379
Offset: 1

Views

Author

Massimo Kofler, Jul 26 2022

Keywords

Comments

A squarefree subsequence of tetrahedral numbers T(n) = C(n+2,3) = n*(n+1)*(n+2)/6.

Examples

			165 = 9*10*11/6 = 3*5*11
286 = 11*12*13/6 = 2*11*13
455 = 13*14*15/6 = 5*7*13
9139 = 37*38*39/6 = 13*19*37
		

Crossrefs

Intersection of A000292 and A007304.
Subsequence of A070755.

Programs

  • Mathematica
    Select[Table[n*(n + 1)*(n + 2)/6, {n, 1, 2000}], FactorInteger[#][[;; , 2]] == {1, 1, 1} &] (* Amiram Eldar, Jul 26 2022 *)
Showing 1-3 of 3 results.