A070760 Numbers k such that k*rev(k) is a square different from k^2, where rev=A004086, decimal reversal.
100, 144, 169, 200, 288, 300, 400, 441, 500, 528, 600, 700, 768, 800, 825, 867, 882, 900, 961, 1089, 1100, 1584, 2178, 2200, 3300, 4400, 4851, 5500, 6600, 7700, 8712, 8800, 9801, 9900, 10000, 10100, 10404, 10609, 10989
Offset: 1
Examples
a(2)=144: rev(144)=441, 144*441=(12^2)*(21^2)=(12*21)^2 and 144<>12*21=252. From _Bernard Schott_, Jan 02 2019: (Start) Example for family 1: 200 * 2 = 400 = 20^2 Example for family 2: 14400 * 441 = 120^2 * 21^2 = 2520^2 Example for family 3: 28800 * 882 = (2 * 120^2) * (2 * 21^2) = 5040^2 Example for family 4: 5449680 * 869445 = 2176740^2 Example for family 5: 169 * 961 = 13^2 * 31^2 = 403^2 Example for family 6: 528 * 825 = (33 * 4^2) * (33 * 5^2) = 660^2. (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Reinhard Zumkeller)
Programs
-
Haskell
a070760 n = a070760_list !! (n-1) a070760_list = [x | x <- [0..], let y = a061205 x, y /= x ^ 2, a010052 y == 1] -- Reinhard Zumkeller, Apr 10 2012, Apr 29 2011
-
Mathematica
Select[ Range[11000], (k = Sqrt[ # * FromDigits @ Reverse @ IntegerDigits[#]]; IntegerQ[k] && k != #) &] (* Jean-François Alcover, Nov 30 2011 *) sdnQ[n_]:=Module[{c=n*IntegerReverse[n]},c!=n^2&&IntegerQ[Sqrt[c]]]; Select[ Range[11000],sdnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 25 2016 *)
Comments