A070818 Smallest argument m such that commutator[phi(m), gpf(m)] = 2n-1, where phi(m) = A000010(m) and gpf(m) = A006530(m), the largest prime factor of m.
45, 7, 11, 143, 13, 23, 119, 19, 667, 713, 29, 47, 31, 6929, 59, 407, 37, 41, 2867, 53, 83, 3149, 164561, 3233, 1403, 25631, 107, 61, 3763, 1633, 1679, 71, 79, 803, 73, 5959, 4559, 4717, 89, 4841, 36461, 167, 103, 5353, 179, 1067, 97, 101, 2507, 5989
Offset: 1
Examples
f(m) = A070812(m) = A000010(A006530(m)) - A006530(A000010(m)); f(m) = 1 appears first at m = 45: phi(45) = 24, gpf(24) = 3, gpf(45) = 5, phi(5) = 4, so a(1) = phi(5) - gpf(24) = 4 - 3 = 1; also a(255) = 3321377 = 97*97*353: because its largest p factor gpf = 353, phi(353) = 352, phi(3321377) = 3277824 = 1024*3*11*97, with max prime factor = 97. Thus a(255) = 352 - 97 = 255.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
V:= Vector(100): count:= 0: gpf:= t -> max(numtheory:-factorset(t)): for m from 3 while count < 100 do v:= numtheory:-phi(gpf(m))-gpf(numtheory:-phi(m)); if v::even or v < 1 or v > 199 or V[(v+1)/2] > 0 then next fi; V[(v+1)/2]:= m; count:= count+1; od: convert(V,list); # Robert Israel, Jun 24 2025
-
Mathematica
pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] f[x_] := EulerPhi[pf[n]]-pf[EulerPhi[n]] t=Table[0, {257}]; Do[s=f[n]; If[s<258&&t[[s]]==0, t[[s]]=n], {n, 3, 4000000}]; t
Formula
Extensions
5 and 17 removed to make name accurate by Sean A. Irvine, Jun 13 2024
Comments