A070832 a(n) = Sum_{k=0..n} binomial(8*n,8*k).
1, 2, 12872, 1470944, 622116992, 125858012672, 36758056208384, 8793364151263232, 2334899414608412672, 586347560750962049024, 151652224498623981289472, 38612725801339748322639872, 9913426188311626771400228864
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..415
- Index entries for linear recurrences with constant coefficients, signature (136,32880,-552704,-65536).
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[8n,8k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Nov 25 2020 *)
-
PARI
a(n)=sum(k=0,n,binomial(8*n,8*k)); \\ Benoit Cloitre, May 27 2004
-
PARI
Vec((1 - 134*x - 20280*x^2 + 207296*x^3 + 8192*x^4) / ((1 - 16*x)*(1 - 256*x)*(1 + 136*x + 16*x^2)) + O(x^15)) \\ Colin Barker, May 27 2019
Formula
Let b(n) = a(n)-2^(8*n)/8 then b(n)+120*b(n-1)-2160*b(n-2)-256*b(n-3)=0. - Benoit Cloitre, May 27 2004
a(n) = 1/4*16^n + 1/8*256^n + 1/4*(-68 + 48*sqrt(2))^n + 1/4*(-68-48*sqrt(2))^n.
From Colin Barker, May 27 2019: (Start)
G.f.: (1 - 134*x - 20280*x^2 + 207296*x^3 + 8192*x^4) / ((1 - 16*x)*(1 - 256*x)*(1 + 136*x + 16*x^2)).
a(n) = 21*a(n-1) + 353*a(n-2) - 32*a(n-3) for n>4.
(End)
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007