cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A070891 Denominator of Sum_{k=1..n} mu(k)/k when it changes sign.

Original entry on oeis.org

30, 15, 105, 210, 2310, 5005, 1616615, 9699690, 223092870, 111546435, 2156564410, 100280245065, 3710369067405, 7420738134810, 6541380665835015
Offset: 1

Views

Author

Donald S. McDonald, May 17 2002

Keywords

Crossrefs

Programs

  • PARI
    t = 0; v = []; for( n = 1, 80, t1 = t; t = t + moebius( n) / n; if( t * t1 < 0, v = concat( v, denominator( t)), )); v

A070889 Denominator of Sum_{k=1..n} mu(k)/k.

Original entry on oeis.org

1, 2, 6, 6, 30, 15, 105, 105, 105, 210, 2310, 2310, 30030, 15015, 5005, 5005, 85085, 85085, 1616615, 1616615, 4849845, 9699690, 223092870, 223092870, 223092870, 111546435, 111546435, 111546435, 3234846615, 2156564410, 66853496710
Offset: 1

Views

Author

Donald S. McDonald, May 17 2002

Keywords

Examples

			a(6) = 15 because 1 - 1/2 - 1/3 - 1/5 + 1/6 = 4/30 = 2/15.
		

Crossrefs

Cf. A008683, A068337, A070888 (numerators).

Programs

  • Mathematica
    Table[ Denominator[ Sum[ MoebiusMu[k]/k, {k, 1, n}]], {n, 1, 37}]
  • PARI
    t = 0; v = []; for( n = 1, 30, t = t + moebius( n) / n; v = concat( v, denominator( t))); v
    
  • Python
    from functools import lru_cache
    from sympy import harmonic
    @lru_cache(maxsize=None)
    def f(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (harmonic(j-1)-harmonic(j2-1))*f(k1)
            j, k1 = j2, n//j2
        return c+harmonic(j-1)-harmonic(n)
    def A070889(n): return f(n).denominator # Chai Wah Wu, Nov 03 2023

Extensions

Edited by Robert G. Wilson v, Jun 10 2002

A068337 a(n) = n!*Sum_{k=1..n} mu(k)/k, where mu(k) is the Möbius function.

Original entry on oeis.org

1, 1, 1, 4, -4, 96, -48, -384, -3456, 328320, -17280, -207360, -481697280, -516741120, 79427174400, 1270834790400, 681401548800, 12265227878400, -6169334376038400, -123386687520768000, -158218429759488000, 47610136717000704000
Offset: 1

Views

Author

Leroy Quet, Feb 27 2002

Keywords

Crossrefs

Programs

  • Mathematica
    n = 25; Accumulate[Table[MoebiusMu[k]/k, {k, 1, n}]] * Range[n]! (* Amiram Eldar, Oct 22 2020 *)
  • Python
    from math import factorial
    from functools import lru_cache
    from sympy import harmonic
    @lru_cache(maxsize=None)
    def f(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (harmonic(j-1)-harmonic(j2-1))*f(k1)
            j, k1 = j2, n//j2
        return c+harmonic(j-1)-harmonic(n)
    def A068337(n): return factorial(n)*f(n) # Chai Wah Wu, Nov 03 2023

Formula

a(n) = (-1)^(n-1)*{determinant of the n X n matrix m(i,j) = i+(j (mod i))} - Benoit Cloitre, May 28 2004
From Amiram Eldar, Oct 22 2020: (Start)
a(n) = A000142(n)*A070888(n)/A070889(n).
a(n) ~ O(n! * n^(-1/2 + eps)), for every eps>0, if and only if Riemann's hypothesis is true (Roesler, 1986). (End)

A070890 Numerator of Sum_{k=1..n} mu(k)/k when it changes sign.

Original entry on oeis.org

-1, 2, -1, 19, -1, 304, -81988, 410857, -249979, 4165258, -65721449, 2562470143, -5468849774, 184344882947, -137190436674212, 10026981687881, -12611493192339623, 519973962150962777, -8549627883788520181, 1874648830674470878723, -200643437220052588790575, 877316785444551755504875
Offset: 1

Views

Author

Donald S. McDonald, May 17 2002

Keywords

Examples

			a(1)= -1 because numerator first sign change is 1-1/2-1/3-1/5= > (-1)/30 <0.
a(2)= 2 because next sign change is -1/30+1/6 = 2/15, reverts to positive.
		

Crossrefs

Programs

  • PARI
    t = 0; v = []; for( n = 1, 120, t1 = t; t = t + moebius(n) / n; if( t * t1 < 0, v = concat( v, numerator( t)), )); v

A070892 Numbers n such that absolute value of Sum_{k=1..n} mu(k)/k sets a new minimum.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 61, 154, 857, 859, 2141, 2153, 2161, 39011, 39065, 39095, 56026, 56045, 56101, 56189, 56242, 56245, 56254, 56263, 56359, 2985634, 2985703, 2986715, 2986718, 2986721, 16904494, 16904497, 16904531, 16904534
Offset: 1

Views

Author

Donald S. McDonald, May 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    s = 1; t = 0; Do[t = t + MoebiusMu[n] / n; If[ s > Abs[t], s = Abs[t]; Print[n]], {n, 1, 2 * 10^7}]
  • PARI
    t = 0.; t1 = 1; v = []; for( n = 1, 1400, t = t + moebius( n) / n; if( (t / t1 )^2 < 1, t1 = t; v = concat( v, n), )); v

Extensions

Edited and extended by Robert G. Wilson v, May 24 2002
Showing 1-5 of 5 results.