A070911 a(n) is twice the least possible area enclosed by a convex lattice n-gon.
1, 2, 5, 6, 13, 14, 21, 28, 43, 48, 65, 80, 103, 118, 151, 174, 213, 242, 289, 328, 387, 420, 497, 548, 625, 690, 783, 860, 967, 1046, 1177, 1264, 1409, 1498, 1671, 1780, 1955, 2078, 2279, 2444, 2651, 2824, 3051, 3240, 3493, 3676, 3969, 4176, 4489, 4714, 5045, 5302, 5623, 5906
Offset: 3
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 3..150 (terms 3..102 from _Günter Rote_)
- Imre Bárány and Norihide Tokushige, The minimum area of convex lattice n-gons, Combinatorica, 24 (No. 2, 2004), 171-185.
- Tian-Xin Cai, On the minimum area of convex lattice polygons, Taiwanese Journal of Mathematics, Vol 1, No 4 (1997).
- W. Castryck, Moving Out the Edges of a Lattice Polygon, Discrete Comput. Geom., 47 (2012), pp. 496-518.
- Code Golf StackExchange, The smallest area of a convex grid polygon, fastest-code challenge, started by Peter Kagey, Oct 22 2022.
- David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger, Finding minimum area k-gons, Discr. Comput. Geom. 7 (1992), 45-58.
- Steven R. Finch, Convex Lattice Polygons, December 18, 2003. [Cached copy, with permission of the author]
- D. Olszewska, On the first unknown value of the function g(v), Electronic Notes in Discrete Mathematics, 24(2006), 181-185.
- Hugo Pfoertner, Illustrations of optimal polygons for n <= 26, (2018).
- S. Rabinowitz, O(n^3) bounds for the area of a convex lattice n-gon, Geombinatorics, vol.II, 4(1993), pp. 85-88.
- Günter Rote, Python program for producing all optimal polygons
- Günter Rote, Table of a(n), together with coordinates of smallest n-gons, for n=3..100, (2023). For some values of n, there are several polygons: From each equivalence class of smallest n-gons under affine lattice-preserving transformations, one representative is listed.
- R. J. Simpson, Convex lattice polygons of minimum area, Bulletin of the Australian Math. Society, 42 (1990), pp. 353-367.
Crossrefs
Formula
a(n)/2 = A063984(n) + n/2 - 1. [Simpson]
See Bárány and Tokushige for asymptotics.
Extensions
Additional comments from Steven Finch, Dec 06 2003
a(11)-a(20) from Hugo Pfoertner, Nov 26 2018
a(21)-a(25) from Hugo Pfoertner, Dec 02 2018
a(13), a(26) and virtually all terms with even n up to a(42) (as given in A089187) go back to Jamie Simpson, Dec 07 2003
Data section cut at n=16 by N. J. A. Sloane, Dec 21 2022
a(17)-a(26) restored and a(27) onwards added by Günter Rote, Sep 18 2023
Comments