A070921 a(n) = Card{ (x,y,z,u,v) | lcm(x,y,z,u,v)=n }.
1, 31, 31, 211, 31, 961, 31, 781, 211, 961, 31, 6541, 31, 961, 961, 2101, 31, 6541, 31, 6541, 961, 961, 31, 24211, 211, 961, 781, 6541, 31, 29791, 31, 4651, 961, 961, 961, 44521, 31, 961, 961, 24211, 31, 29791, 31, 6541, 6541, 961, 31, 65131, 211, 6541
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- O. Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91-100.
Programs
-
Mathematica
Join[{1},Table[Product[(k + 1)^5 - k^5, {k, FactorInteger[n][[All, 2]]}], {n,2, 68}]] (* Geoffrey Critzer, Jan 10 2015 *)
-
PARI
for(n=1,100,print1(sumdiv(n,d,numdiv(d)^5*moebius(n/d)),","))
-
PARI
a(n) = vecprod(apply(x->(x+1)^5-x^5, factor(n)[, 2])); \\ Amiram Eldar, Sep 03 2023
Formula
Sum_{k>0} a(k)/k^s = (1/zeta(s))*Sum_{k>0} tau(k)^5/k^s.
Multiplicative with a(p^e) = (e+1)^5 - e^5. - Amiram Eldar, Sep 03 2023
Comments