cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070921 a(n) = Card{ (x,y,z,u,v) | lcm(x,y,z,u,v)=n }.

Original entry on oeis.org

1, 31, 31, 211, 31, 961, 31, 781, 211, 961, 31, 6541, 31, 961, 961, 2101, 31, 6541, 31, 6541, 961, 961, 31, 24211, 211, 961, 781, 6541, 31, 29791, 31, 4651, 961, 961, 961, 44521, 31, 961, 961, 24211, 31, 29791, 31, 6541, 6541, 961, 31, 65131, 211, 6541
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

A048691(n) gives Card{ (x,y) | lcm(x,y)=n }.

Crossrefs

Cf. A000005, A008683, A048691, A070919, A070920, A247517 (Mobius transform).

Programs

  • Mathematica
    Join[{1},Table[Product[(k + 1)^5 - k^5, {k, FactorInteger[n][[All, 2]]}], {n,2, 68}]] (* Geoffrey Critzer, Jan 10 2015 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,numdiv(d)^5*moebius(n/d)),","))
    
  • PARI
    a(n) = vecprod(apply(x->(x+1)^5-x^5, factor(n)[, 2])); \\ Amiram Eldar, Sep 03 2023

Formula

a(n) = Sum_{d|n} A000005(d)^5*A008683(n/d).
Sum_{k>0} a(k)/k^s = (1/zeta(s))*Sum_{k>0} tau(k)^5/k^s.
Multiplicative with a(p^e) = (e+1)^5 - e^5. - Amiram Eldar, Sep 03 2023