A070967 a(n) = Sum_{k=0..n} binomial(6*n,6*k).
1, 2, 926, 37130, 2973350, 174174002, 11582386286, 729520967450, 47006639297270, 2999857885752002, 192222214478506046, 12295976362284182570, 787111112023373201990, 50370558298891875954002, 3223838658635388303336206, 206322355109994528871954490
Offset: 0
References
- Matthijs Coster, Supercongruences, Thesis, Jun 08, 1988.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..554
- Index entries for linear recurrences with constant coefficients, signature (38,1691,-1728).
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[6n,6k],{k,0,n}],{n,0,20}] (* or *) LinearRecurrence[ {38,1691,-1728},{1,2,926,37130},30] (* Harvey P. Dale, Jun 19 2021 *)
-
PARI
a(n)=sum(k=0,n,binomial(6*n,6*k))
-
PARI
a(n)=if(n<0,0,(2*(-27)^n+2+64^n+0^n)/6)
-
PARI
a(n)=if(n<0,0,polsym(x*(x-64)*(x+27)^2*(x-1)^2,n)[n+1]/6)
Formula
G.f.: (1-36x-841x^2+288x^3)/((1-x)*(1+27x)*(1-64x)).
a(n) = ((-27)^n + 1)/3 + (64^n + 0^n)/6.
Let b(n) = a(n)-2^(6n)/6 then b(n)+26*b(n-1)-27*b(n-2) = 0. - Benoit Cloitre, May 27 2004