A070981 Smallest integer k such that n divides floor((4/3)^k).
1, 3, 4, 5, 6, 13, 7, 14, 8, 21, 16, 21, 9, 13, 20, 22, 10, 32, 17, 21, 13, 51, 11, 67, 37, 66, 65, 14, 69, 21, 12, 68, 16, 35, 20, 66, 15, 122, 65, 22, 98, 13, 70, 66, 20, 117, 28, 67, 58, 37, 34, 66, 151, 103, 93, 14, 240, 80, 18, 21, 79, 87, 20, 68, 114, 66, 28, 35, 155
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A064628.
Programs
-
Mathematica
sik[n_]:=Module[{k=1},While[Mod[Floor[(4/3)^k],n]!=0,k++];k]; Array[sik,70] (* Harvey P. Dale, Jun 12 2019 *)
-
PARI
for(n=1,100,s=1; while(floor((4/3)^s)%n>0,s++); print1(s,","))
Formula
a(n) = min( k : A064628(k) == 0 mod(n) )